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Silica Chemisorbed Bis(Hydrogensulphato)Benzene (SiO2-BHSB)
as a New, Environmentally Benign and Recyclable Catalyst for
an Efficient Synthesis of Biscoumarin Scaffolds in Water
Based Solvent

K. R. Kadama , G. R. Pandharea, A. S. Waghmarea, V. D. Muradea, N. R. Kambleb, and
V. T. Kambleb�
aDepartment of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Ahmednagar,
India; bOrganic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth
Marathwada University, Nanded, India

ABSTRACT
The immobilization of homogeneous catalytic material over the inert het-
erogeneous support is a recent strategy to overcome the drawbacks and
unite the merits associated with the homogeneous as well as heteroge-
neous catalysts. However the physisorption-induced immobilization does
not serve the purpose because of its sensitive reversible nature, a tiny
change in reaction parameters may revert the physisorption and so the
immobilization. In this work, a new catalytic material silica chemisorbed
bis(hydrogensulphato)benzene (SiO2-BHSB) was achieved through the
chemisorption of bis(hydrogensulphato)benzene as an active catalytic part
on the surface of porous silica. Structural features, purity, thermal stability,
and acid strength of the synthesized SiO2-BHSB material were established
by adequate analytical techniques, such as FT-IR, solid-state CP-MAS 13C
NMR, solid-state CP-MAS 29Si NMR, EDX, DTG, TGA, and acid–base volumet-
ric studies. An environmentally benign catalytic protocol for the synthesis
of biscoumarin scaffolds through a tandem reaction between 4-
Hydroxycoumarin and structurally diverse aldehydes was developed in
which the synthesized material SiO2-BHSB was observed to work as an effi-
cient and reusable catalyst. The structures of the synthesized biscoumarin
derivatives were established from their physical and spectrometric data.
The synthesized catalytic material was observed to show sustained catalytic
activity even after five cycles of its recovery and reuse. In comparison with
the earlier reported methods, a tiny amount (2.5mol%) of catalyst is suffi-
cient to bring out the transformation smoothly in an aqueous-based solv-
ent, ease of recovery, and reusability of the catalyst are additional salient
features of the present protocol.
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Introduction

Acid catalysis constitutes a major class of catalyzed chemical transformations, in industry, it is
widely used in oil refinements, biomass transformations, and in various synthetic processes of
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pharmaceuticals, fine chemicals, polymers, and commodity chemicals.1,2 Conventional strong
mineral acids viz. HCl, HI, HNO3, H2SO4, HClO4, etc., exhibit great catalytic potentials, how-
ever, their industrial catalytic use is constrained due to associated inherited problems, such as
safety hazards, equipment corrosion, difficulty in work up separation, toxicity, cost of disposal,
waste management, and environmental concerns.3,4 A catalytic material, which is environmen-
tally benign, sustainable, low cost, convenient, and efficient has remained of great demand.5 In
the catalytic transformations, heterogeneous solid acid catalysts aid high selectivity, low corro-
sivity, less toxicity, facilitate the post workup isolation and subsequent reuse.6,7 Consequently
replacing conventional liquid acids by heterogeneous solid acids is a good strategy to overcome
the associated problems but despite having other attractive properties, heterogeneous solid
acids also carry a major drawback of having a poor catalytic activity due to lesser active sites
and smaller contact area than their liquid acid analogous.8 A rational approach to unite the
merits of homogeneous and heterogeneous acid catalysts is to immobilize the active homoge-
neous catalytic material over the porous heterogeneous support.9 In this respect the highly
porous and large surface area materials, such as activated carbon, silica, alumina, titania, zirco-
nia, grapheme oxide, cellulose, starch, chitosan, functionalized nano-materials, etc., have
attracted immense attention of the researchers as the heterogeneous support candidates to
immobilize the homogeneous active catalytic part. Among the available support materials, sil-
ica has been widely studied and used as a heterogeneous support due to its anticipated proper-
ties, such as a large contact area, high porosity, compatibility with a wide range of chemicals,
insolubility in most of the organic solvents, ease of separation, good stability, reusability, and
affordable price.10,11

Coumarin and its derivatives are placed among the most privileged scaffolds in pharmacology
and therapeutics due to exhibit a wide spectrum of biological activities, such as antibacterial,12,13

antimicrobial,14 antitumor,15 anticancer,16 antiviral against ‘chikungunya’,17 antihepatitis,18 anti-
coagulant19,20 vasorelaxant,21 spasmolytic,22 free radical scavengers,23 HIV integrase inhibitor,24

a-glucosidase inhibitor25,26 enzymatic inhibition activity,27 and snake’s venom inhibition activ-
ity.28 In addition to biological activities coumarins are known to show their applications in opto-
electronics,29–31 cellular imaging,32 lasers,33 optical whitening materials,34 fluorescent markers for
proteins,35 effective luminescent materials,36 and detection of Co (II) and Ni (II).37

More specifically, good number of articles exploring medicinal importance of heterocycle
coupled biscoumarins are widely published, which described the antibacterial property of biscou-
marin-pyrazole compounds,38 antioxidant and antibacterial effect of thiazolyl-pyrazole-biscou-
marin structures,39 antimicrobial potential of chalcone coupled biscoumarin copolyster,40 a-
glucosidase inhibitor action of biscoumarin-thiourea hybrid,41 anti-cancer, anti-leishmanial, and
alkaline phosphatase inhibition activity of biscoumarin-iminothiazole conjugates,42 semiconduc-
tors and reducing nature of biscoumarins,43 biscoumarin derivatives as a ligand in terbium (III)
complexes,44 and biscoumarine as a chemosensor for detection of Zn(II) and Cu(II).45 Some of
the biscoumarin based representative drug molecules in the market are presented in Figure 1.46

Due to diverse biological activities and other applications, production of coumarins has been
paid good attention. Many articles have described the extraction of coumarins from its natural
sources, which includes extraction from sweet woodruff (Galium odoratum),47 sweet-clover
(Genus Melilotus),48 sweet grass (Hierochloe odorata),49,50 tonka beans (Dipteryxodorata),51 and
vernal grass(Anthoxanthum odoratum).52 A huge numbers of catalytic protocols have been devel-
oped for the laboratory synthesis of coumarin scaffolds, in which the use of acids,53–59 bases,60,61

salts,62–64 porous materials,65–67 Ionic liquids,68–70 magnetic nano-composites,71–73 metal organic
frameworks74,75, and functionalized heterogeneous materials76–79 are described as the catalytic sys-
tems for the synthesis of biscoumarins.

As our interest in the development of environmentally benign catalytic materials as well as
catalytic protocols for the synthesis of fine chemicals and bioactive compounds.80,81 Recently, we
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explored our work on the development of a new catalytic material ‘silica chemisorbed bis(hydro-
gensulphato)benzene (SiO2-BHSB)’ and its catalytic potential for the synthesis of bis(indolyl)me-
thanes.82 As a next link in this chain, herein we wish to present our observations on the
development of an efficient catalytic protocol for the synthesis of biscoumarin derivatives using
SiO2-BHSB as a green catalyst. In this study, we observed that a small amount of SiO2-BHSB
(2.5mol%) is sufficient to promote the synthesis of biscoumarin scaffolds (3) efficiently from a
pseudo three-component Knoevenagel–Michael reaction between two moles of 4-
Hydroxycoumarin (1), and one mole of aldehyde (2) at room temperature (Scheme 1). Variety of
structurally diverse aldehydes underwent the catalytic protocol smoothly to offer good to excellent
yields of corresponding biscoumarin derivatives in aqueous ethanol as a water based solvent. As
SiO2-BHSB being a hybrid organo-inorganic heterogeneous material can be recovered conveni-
ently and quantitatively from the reaction mixture. The recovered catalyst when employed for
further cycles of catalytic reuse showed sustained reaction promotion activity even after five cycles
of its reuse.

Scheme 1. Silica chemisorbed Bis(hydrogensulphato)benzene catalyzed synthesis of biscoumarin derivatives.

Figure 1. Biscoumarin based representative drug molecules in market.46
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Materials and methods

Materials and experimentals

4-Hydroxycoumarin, phloroglucinol, chlorosulfonic acid, silica gel, malononitrile, substituted
aldehydes, and rest of the chemicals used, were obtained from the Sigma-Aldhrich, Merck, or
Loba chemical companies and used as received, without further refinement. The 1HNMR spectra
were recorded on Bruker Avance FT-NMR (400 or 500MHz) spectrometer, 13C NMR (75MHz)
spectra were scanned on Varian-NMR-Mercury 300 FT-NMR spectrometer while the solid state
CP MAS 13CNMR and CP MAS 29Si NMR spectra were scanned on JEOL ECZR FT-NMR spec-
trometer. The IR spectra were obtained from Perkin Elmer RX-I FTIR spectrometer. The EDX
study of the catalyst was performed on JEOL JSM 6100 FESEM while the TGA-DTA study on
Shimadzu TGA-50H thermo-gravimetric analyzer. The elemental analysis of the synthesized com-
pounds was done on Truspec Micro Analyzer. Melting points were carried out in open capillary
tubes by gradual heating in paraffin bath. Cambridge software Ultra Chem Draw version 0.8 of
Perkin Elmer Informatics, Waltham, USA was used to draw the structures involved.

Procedure for the synthesis of silica chemisorbed bis(hydrogensulphato)benzene
(SiO2-BHSB)

Synthesis of SiO2-BHSB was achieved through a sequence of three steps, by taking support of a
literature report on the synthesis of ‘morpholinated and 8-hydroxyquilonited silica gel’.83

Step-I: synthesis of silica chloride (SiO2-Cl)
Ice cold thionyl chloride (10 g) was added drop wise to a vigorously stirring mixture of oven-
dried silica gel (100–200 mesh, 10 g) and ice-cold dichloromethane (50ml) taken into a round
bottom flask (250ml) equipped with water condenser and a calcium chloride guard tube
(Scheme 2, Step-I). After stirring the mixture for 24 h at room temperature, the unconsumed thi-
onyl chloride and solvent were removed under reduced pressure, so obtained light gray particles
of silica chloride (SiO2-Cl) are flame dried and immediately stored in a previously weighed air-
tight glass bottle. The yield of SiO2-Cl was found 10.380 g and it can be used for months without
decrease in its activity. The silica chloride (SiO2-Cl) being a moisture-sensitive compound, can
easily convert into original silica gel if come in contact with the moisture. Therefore, it needs to
be stored in an airtight glass bottle. The amount of chloride in the SiO2-Cl sample was deter-
mined using the simple acid–base titration, in which the liberated HCl from silica chloride
(100mg) in 50ml deionized water was titrated against the standardized alkali solution, obtained
result revealed that 1.666 milli-equivalent of chloride was found per gram of SiO2-Cl sample.

Step-II: synthesis of SiO2-phloroglucinol
Silica chloride (SiO2-Cl, 8.30mmol) from step-I and phloroglucinol (7.5mmol) were stirred in
dry CH2Cl2 (30ml) taken into a round bottom flask equipped with a drying tube (Scheme 2,
Step-II). Evolving HCl bubbles from the reaction mixture indicate progress of the reaction. After

Scheme 2. Systematic synthesis of Silica chemisorbed Bis(hydrogensulphato)benzene (SiO2-BHSB).
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2 h stirring, the resulting silica bound phloroglucinol (SiO2-Phgl) was filtered at the pump,
washed with CH2Cl2 (3� 10ml), dried at 60–70 �C and weighed. A 5.520 g yield of SiO2-Phgl
was obtained.

Step-III: synthesis of silica chemisorbed bis(hydrogensulphato)benzene (SiO2-BHSB)
A 10% solution of chlorosulphonic acid (15mmol) in CH2Cl2 was added drop wise to a magnetically
stirring, cold suspension of SiO2-phloroglucinol (7.5mmol) in CH2Cl2 (30ml) with the help of a
constant dropping funnel (Scheme 2, Step-III). The immediate evolving HCl gas was trapped by an
acid scavenger assembly arranged along. After completion of the addition, the mixture was stirred
for further 2 h, the resulting suspension was filtered at the pump, washed thrice with methanol and
once with distilled water in order to remove even a last fraction of an unconsumed or physisorbed
chlorosulfonic acid. Obtained brown solid was dried at 60 �C for 6–8 h, the resultant free-flowing
particles of SiO2-BHSB that weighed 6.240 g as a final yield and stored in a glass bottle. The forma-
tion of SiO2-BHSB was confirmed by qualitative as well as quantitative analytical methods.

Procedure for the synthesis of biscoumarin derivatives
A mixture of 4-hydroxycoumarin (4mmol), aldehyde (2mmol), and catalytic amount of SiO2-
BHSB (2.5mol%) was stirred magnetically in ethanol:water (2:1 v/v) at room temperature for the
time mentioned in Table 2. Progress of the reaction was checked by TLC using n-hexane and
ethyl acetate as the mobile phase. Upon completion of the reaction, as denoted by TLC, the solv-
ent was removed by filtration. Hence obtained crude product was dissolved in ethanol in order to
recover the catalyst SiO2-BHSB by filtration and the filtrate was subjected to recrystallization,
obtained crystalline product was dried, examined on TLC for its purity and further purified by
column chromatography if necessary. The structures of the representative synthesized compounds
were confirmed from their physical, analytical, and spectroscopic data.

The recovered catalyst from the reaction mixture was washed with ethanol (3� 5ml), dried at
60 �C, tested quantitatively for its acid strength, and employed further for the next cycle of its reuse.

Result and discussion

In the first phase of study, synthesis of SiO2-BHSB was achieved by referring a report which deals
with the synthesis of ‘Morpholinated and 8-Hydroxyquinolinated silica gel’.83 Initially, we were
uncertain about the formation of expected catalytic material ‘SiO2-BHSB’ due to the possible for-
mation of a competitive side product SiO2–O–SO3H from Step-III (Scheme 2). To check the fact
a parallel blank reaction along with Step-III (Scheme 2) was carried out using pure silica gel (5 g)
at the place of SiO2-Phgl. The resultant products of both these reactions were analyzed volumet-
rically for their acid strengths. Only a trace amount of acid was observed with the product of the
parallel blank reaction while 3 milli-equivalents of acid per gram of the main reaction product
(SiO2-BHSB) were observed. This fact strongly testified the chemisorption of bis(hydrogensulpha-
to)benzene (BHSB) on silica and denied the possible share of SiO2–O–SO3H in the main reaction
product SiO2-BHSB. The percentage of carbon and sulfur in the EDX analysis of SiO2-BHSB
(Figure 2, C2) also supports strongly the presence of BHSB fragment in the final product of
Scheme 2. The four signals appeared at 102, 106, 157, and 159 ppm in the solid state 13C NMR
spectrum (Figure 2, B1) also addressed for presence of four types of sp2 carbons in the material,
in which two (157 and 159 ppm) carbons appeared at down field. Presence of only four signals in
the 13CNMR reflected the expected symmetric nature of the substituted benzene while down field
nature of two carbons revealed their attachments with the electron-withdrawing elements/groups.
One down field carbon is due to the attachment of benzene ring to silica skeleton through oxygen
linkage while next down field carbon signal is due to two symmetric carbons attached with
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–OSO3H groups. The symmetric nature of the involved benzene nucleus and down field nature
of two carbons strongly justifies the presence of 3,5-BHSB in the synthesized catalytic material.

Vibrational spectroscopic (FTIR) study of SiO2-BHSB
A1, A2, and A3 represent the FT-IR spectra of silica chloride (SiO2–Cl), silica chemisorbed phlor-
oglucinol (SiO2-Phgl), and SiO2-BHSB, respectively (Figure 2). The spectrum A1 reflects all the

Figure 2. A1, A2, and A3 are FTIR spectra of SiO2–Cl, SiO2-Phgl and SiO2-BHSB, respectively, B1 and B2 are CPMAS 13C NMR and
29Si NMR spectra of SiO2-BHSB, C1 and C2 are EDX scans of SiO2–Cl and SiO2-BHSB, D1 and D2 are TGA-DTA plots of SiO2–Cl and
SiO2-BHSB.
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features of silica chloride such as strong absorptions at 3550 and 3334 cm�1 represent silanol
O–H stretches, absorptions at 1201 and 1053 cm�1 are for anti-symmetric and symmetric
stretches of Si-O–Si linkage, peaks at 950 and 812 cm�1 are for Si–OH stretch, while absorption
at 450 cm�1 represents the Si–Cl stretch. The new absorptions appeared in spectrum A2 at 1505,
1614, and 3000–3600 represent C¼C and O–H stretch, respectively, which testifies the replace-
ment of chloride by phloroglucinol from the silica surface. In addition to the peaks discussed ear-
lier, the extended absorption from 2000 to 3630 cm�1 in spectrum A3 clearly indicates the highly
hydrogen-bonded (acidic) nature of OH. Strong absorptions at 1220 and 1140 cm�1 are due to
the antisymmetric and symmetric stretch of O¼ S¼O moiety which supports the incorporation
of the ‘–SO3H’ group in the material. The FT-IR spectroscopy strongly manifests the formation
of the SiO2-BHSB.

Solid state 13C and 29Si NMR studies of SiO2-BHSB
The nature of carbon and silicon in the synthesized material was studied with the help of solid-
state NMR spectroscopy.

The four signals at 102, 106, 157, and 159 ppm in CP MAS 13C NMR spectrum (Figure 2, B1)
correspond for carbon-4, carbon-2/6, carbon-1, and carbon-3/5, respectively (Figure 2, B1). This
is a good agreement of 13C NMR spectrums with the structure of SiO2-BHSB. The CP MAS 29Si
NMR spectrum (Figure 2, B2) reveals the presence of two different silicon atoms in the sample.
Signal appearing at �104.813 ppm is due to the interior silicon Si–(OSi)4 and the next at
�113.269 ppm is for the surface silicon (SiO)3–Si–OH/OAr of silica gel. Conventionally, the inter-
ior silicons (�104 ppm) are described as Q3 while that of surface silicons (�113 ppm) as Q4.

Thermogravimetric analysis (TGA) and differential thermal gravimetry analysis (DTG) of
SiO2-BHSB
The thermal stability of the SiO2-BHSB has been studied with the help of thermo-gravimetric
analysis (TGA) and the differential thermal gravimetric (DTG) experiments. The data obtained
reveal that the 3,5-bis(hydrogensulphato)benzene group is stable up to 240 �C, beyond this tem-
perature and up to 800 �C about 25% weight loss was observed (Figure 2, D2), which reflects the
decomposition of organic backbone and sulfonic groups of BHSB. This weight loss is in good
agreement of the 1.5mmol of 3, 5-bis(hydrogensulphato)benzene per gram of SiO2-BHSB. Earlier
at around 90 �C, about 11% weight loss was observed, which represents the removal of surface
water attached with the silica gel. In TGA plot D1 (Figure 2), the early loss of 15% of weight rep-
resents the evaporation of attached chloride and water molecules from the surface of SiO2–Cl.
The further gradual loss in weight is due to the decomposition of the silica skeleton.

Energy dispersive X-ray (EDX) study of SiO2-BHSB
The purity and stoichiometry of synthesized SiO2-BHSB was confirmed from its EDX analysis.
No other element than C, O, S, and Si in the EDX spectrum of SiO2-BHSB (Figure 2, C2) is in
support of its purity. The enhancement in the intensities and percentages of carbon and sulfur
signals (Figure 2, C2) than the EDX spectrum of silica chloride (Figure 2, C1) is the clear indica-
tives of stoichiometry as well as the chemisorption of 3,5-bis(hydrogensulphato)benzene on sil-
ica gel.

SiO2-BHSB catalyzed synthesis of biscoumarin derivatives
After establishing the structure of SiO2-BHSB, we were interested to study the catalytic role of
SiO2-BHSB in the synthesis of biscoumarin scaffolds, for this study a reaction between 4-
Hydroxycoumarin (4mmol) and 4-Methylbenzaldehyde (2mmol) was selected as a model
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reaction. In the preliminary trial study, four sets of the model reaction with different amounts of
catalyst in EtOH and without solvent were studied (Table 1, Entries a–d). The TLC of the model
reaction without solvent and without catalyst showed no change in its composition even after
12 h stirring at room temperature while the same set of the reaction produced Knoevenagel prod-
uct (Scheme 1, 4b) with 48% yield when further stirred at 80 �C for next 12 h (Table 1, Entry a).
The second and third model reactions in EtOH with no catalyst and SiO2 as catalysts respectively,
after 12 h of stirring each produced small yields of Knoevenagel products (Table 1, Entries b and
c) only. The fourth model reaction in ethanol and using SiO2-BHSB (10mol%) as a catalyst sur-
prisingly produced a good yield of biscoumarin derivative at room temperature in a smaller reac-
tion time (Table 1, Entry d) than the earlier three model reactions (Table 1, Entries a–c). The
obtained results demonstrate the catalytic role of SiO2-BHSB in the formation of the desired

Table 1. Optimization of reaction conditions and comparative catalytic activity study for the model reaction.
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Knoevenagel–Michael product. The earlier three reactions without SiO2-BHSB could only produce
Knoevenagel product and not Knoevenagel–Michael product.

In earlier study, ethanol was used as a trial solvent to perform preliminary studies, thereafter
in order to select the most suitable solvent for the under investigation protocol, various polar and
non-polar solvents were employed for the model reaction using SiO2-BHSB (10mol%) as a cata-
lyst at stirring, obtained results are summarized in Table 1 (Entries e–o). It is noteworthy to men-
tion that the model reaction offered superior results in methanol and ethanol:water (2:1 v/v)
system (Table 1, Entries e and o) than rest of the solvents employed. As ethanol:water (2:1 v/v)
system being greener than methanol, we decided to explore further dimensions of this study
using ethanol:water (2:1 v/v) as the reaction media.

To fix an optimal amount of catalyst for under investigation protocol, the model reaction was
examined for various amounts of SiO2-BHSB (1–10mol%) as a catalyst under stirring in ethanol:-
water (2:1) solvent system. The direct proportional of yields and inverse proportional of reaction
times were noted as the amount of SiO2-BHSB increased from 1 to 3mol% (Table 1, Entries
n–p), further increase in the amounts of catalyst did not display improvements in results. It indi-
cates that the optimal amount of catalyst falls in 2–3mol% range. A microanalysis of this range
revealed that the 2.5mol% of catalyst produced the best results of the model reaction (Table 1,
Entry s).

A comparative study between herein described catalytic protocol and various reported catalytic
protocols for the model reaction has been presented in Table 1. The study revealed that under
stirring, a small amount (2.5mol%) of SiO2-BHSB is sufficient to bring better results than the
cited catalytic protocols, whereas majority of the reported protocols need 10–40mol% of catalysts
(Table 1, Entries w–z and bb) even under harsh energy conditions. Present catalytic protocol
offers superiority and convenience over the cited protocols in terms of catalyst amount, reusabil-
ity of catalyst, environmental compatibility of the solvent, and reaction conditions (Table 2). The
probable reasons for the superiority of the present catalytic protocol include the large surface to
volume ratio, organo–inorganic hybrid nature, dibasic, and strong acidic character of the catalytic
material SiO2-BHSB. The large surface-to-volume ratio provides ample active sites for substrates
to react among. The dibasic and strong acidic character of the sulfonic acid could release ample
number of Hþ by dissociating irreversibly, which could assist to form greater number of the
acid-induced active intermediates, which later convert in to the stable product (Figure 3).
According to the thumb rule of solubility ‘like dissolves like’ the organo-inorganic hybrid nature
of the SiO2-BHSB may assist the organic substrates to attend the closest approach with the cata-
lyst at normal energy conditions. The dibasic nature of the catalyst could release double amount
of Hþ in the reaction media, which in turn could utilize to form double amounts of acid-pro-
moted intermediate species. These are the most plausible reasons to explain the sufficiency of a
small amount (2.5mol%) of catalyst for this protocol. The plausible working mechanism of SiO2-
BHSB for the synthesis of biscoumarin derivatives is described in Figure 3.

A range of structurally diverse aldehydes were employed to establish the generality of the
above-developed catalytic protocol. It was observed that all the employed aldehydes smoothly
underwent the catalytic transformation and offered well to excellent yields in 2–5 h. Steric crowd-
ing at reaction site and electronic effect of substituents showed a notable effect in terms of reac-
tion times and yields. Aldehydes with electron-donating substituents took longer to complete the
reaction (Table 2, compounds 3c, 3d, 3g, and 3 l) than those bearing electron-withdrawing sub-
stituents (Table 2, compounds 3e, 3f, 3i, and 3j). Increased steric hindrance at the reaction site
of aldehydes caused notable influence in terms of decrease in yields and increase in reaction times
(Table 2, 4m–4o).

In the catalyst reuse study, the filtered catalyst from the reaction media was first washed with
ethanol (3� 5ml) and then with plenty of water, dried in a hot air oven at 60 �C and employed
further for the next run of its reuse. Such six cycles of catalyst recovery and reuse were tested for
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the model reaction under optimized set of reaction conditions, the obtained results are summar-
ized in the graphical format (Figure 4). It was noted that the model reactions produce about
identical yields with a little extension of reaction time for each subsequent cycle of catalyst reuse.

Table 2. SiO2-BHSB catalyzed synthesis of biscoumarin derivatives under optimized set of conditions.
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In order to examine whether the catalyst material underwent any change during the catalytic
synthesis of target scaffolds? The recovered catalyst from the last cycles of its reuse was analyzed
by FTIR and EDX techniques. Obtained results (Figure 5) upon comparison with that of fresh
catalyst revealed that there are conservations of functional groups as well as elemental compos-
ition in the reused catalyst.

Physical and analytical data of some representative biscoumarins

3, 3’-Benzylidene-bis-(4-hydroxycoumarin) (3a)
Colorless solid; M.P.: 217–219 �C; FTIR (KBr, �max): 3445 (O–H), 1672 (C¼O), 1604 (C¼C),
1562 (C¼C), 1352, 1097 (C–O), 756 cm�1; 1HNMR (400MHz, CDCl3, d): 6.10 (s, 1H, Ar-CH),
7.21– 7.34 (m, 7H, Ar-H), 7.41 (d, 2H, Ar-H), 7.64 (m, 2H, Ar-H), 8.07 (d, 2H, Ar-H) 11.30 (s,
1H, –OH), 11.53 (s, 1H, –OH) ppm; 13CNMR (75MHz, CDCl3, d): 36.04 (Ar-CH), 103.74,
105.46, 116.50, 117.91, 124.23, 124.75, 126.33, 126.72, 128.48, 132.74, 135.06, 151.21, 164.44,

Figure 3. Plausible mechanism showing catalytic role of SiO2-BHSB in the synthesis biscoumarin derivatives.

Figure 4. SiO2-BHSB reuse study for the synthesis of 3b.
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165.66, 166.76 (C¼O), 169.11(C¼O) ppm; MASS (ESþ): 413 (8. 65%, MþHþ), 273 (10.23%),
251 (28.02%), 185 (27.74%), 163 (95.67%), 140 (4.83%) m/z; Elemental analysis: calculated (%) for
C25H16O6: C, 72.81; H, 3.91; found: C, 72.76; H, 3.85.

3, 3’-(p-Tolylmethylene)bis(4-hydroxy-2H-chromen-2-one) (3b)
White solid; M.P.: 265–267 �C; 1HNMR (400MHz, CDCl3, d): 2.33 (s, 3H, Ar-CH3), 6.06 (s, 1H,
Ar-CH), 7.17 (m, 4H, Ar-H), 7.25 (s, 2H, Ar-H), 7.40 (d, 8.40Hz, 4H, Ar-H), 7.62 (m, 2H, Ar-
H), 8.00 (d, 6.40Hz, 1H, Ar-H), 8.06 (d, 6.4Hz, 1H, Ar-H), 11.29 (s, 1H, –OH), 11.51 (s, 1H,
–OH) ppm; 13CNMR (75MHz, CDCl3, d): 21.10 (Ar-CH3), 35.97 (Ar-CH), 104.18 105.86, 116.56,
116.74, 117.07, 124.49, 124.97, 126.48, 129.45, 132.14, 136.59, 152.40, 152.63, 164.65, 165.83,
166.95 (C¼O), 169.44 (C¼O) cm�1; Elemental analysis: calculated (%) for C26H18O6: C, 73.23;
H, 4.25; found: C, 73.15; H, 4.19.

3, 3’-((3, 4, 5-Trimethoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (3l)
Colorless solid; M.P.: 240–242 �C; FTIR (KBr, �max):1662 (C¼O), 1618 (C¼C), 1566 (C¼C),
1348, 1126 (C–O), 759 (Ar-H bending) cm�1; 1HNMR (400MHz, CDCl3, d): 3.58 (s, 6H, 2 �
Ar-OCH3), 3.63 (s, 3H, Ar-OCH3), 6.28 (s, 1H, Ar-CH), 6.45 (s, 2H, Ar-H), 7.30–7.36 (m, 4H,
Ar-H), 7.56–7.60 (m, 2H, Ar-H), 7.91 (t, 7.20Hz, 2H, Ar-H) ppm; 13CNMR (75MHz, CDCl3, d):
35.73 (Ar-CH), 55.69 (Ar-OCH3), 60.24 (Ar-OCH3), 103.88, 104.23, 116.09, 123.71, 124.46,
131.38, 132.45, 136.47, 152.08, 153. 76, 164.67 (C¼O), 167.49 (C¼O) ppm; MASS (ESþ): 503
(3.85%, MþHþ), 363 (41.46%), 341 (127. 33%), 207 (7.17%), 167. 1 (10.36) m/z; Elemental ana-
lysis: calculated (%) for C28H22O9: C, 66.93; H, 4.41; found: C, 66.88; H, 4.36.

3, 3’-(2-Nitrobenzylidene)-bis-(4-hydroxycoumarin) (3o)
Yellow solid. M.P.: 206–208 �C; FTIR (KBr, �max): 2603-2586 (OH), 3078 (Ar-H), 1658 (C¼O),
1602 (C¼C), 1558 (C¼C), 1521 (–NO2), 1354 (–NO2), 1213, 1097, 829, 754 (Ar-H bending)
cm�1; 1HNMR (400MHz, CDCl3, d): 6.66 (s, 1H, Ar-CH), 7.31–7.70 (m, 10H, Ar-H), 7.98–8.11
(m, 2H, Ar-H), 10.42–11.54 (br s, 2H, OH) ppm; 13CNMR (75MHz, CDCl3, d): 33.10 (Ar-CH),
103.82, 116.76, 124.73, 128.09, 129.12, 132.39, 132.55, 149.88, 152.16, 164.46 (C¼O), 166.14
(C¼O), 167.49 ppm; MASS (ESþ): 458 (24.94%, MþHþ), 318 (19.16%), 185 (24.98%), 163
(97.60%), 120 (3.44%) m/z; Elemental analysis for C25H15NO8: calculated (%): C, 65.65; H, 3.31;
N, 3.06; found (%): C, 65.69; H, 3.33; N, 3.12.

Figure 5. FTIR spectrum (R1) and EDX scan (R2) of recovered SiO2-BHSB after the cycles of its reuse.
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3, 3’-(Furan-2-ylmethylene)-bis-(4-hydroxy-2H-chromen-2-one) (3p)
White solid; M.P.: 198–199; 1HNMR (500MHz, CDCl3, d): 6.10 (s, 1H, Ar-CH), 6.31 (m, 1H, Ar-
H), 6.35 (dd, J¼ 8.5Hz, 1.5Hz, 1H, Ar-H), 7.34 to 7.37 (m, 2H, Ar-H), 7.38 to 7.39 (m, 2H, Ar-
H), 7.49 (t, J¼ 1Hz, 1H, Ar-H), 7.60–7.64 (m, 2H, Ar-H), 7.96 (dd, J¼ 8Hz, 1.5Hz, 2H, Ar-H),
9.80 (br, 2H, –OH) ppm; 13CNMR (75MHz, CDCl3, d): 32.54 (Ar-CH), 107.77, 110.62, 116.76,
124.45, 124.98, 133.02, 148.85, 152.50 (C¼O), 164.92 (C¼O) ppm; Elemental analysis for
C23H14O7: calculated (%): C, 68.66; H, 3.51; found (%): C, 68.61; H, 3.44.

Conclusion

Physisorption induced immobilization of the active catalytic part on an inert support is highly
sensitive toward reaction conditions. Even a small change in a reaction parameter may cause the
mobilization of the active catalytic part from the surface of the support. In order to overcome
this problem of physisorption we have synthesized SiO2-BHSB as a new silica-supported catalytic
material based on the chemisorption phenomenon. Structural features, elemental composition,
thermal stability, and acid strength of the synthesized catalytic material were established with the
help of suitable analytical techniques. The synthesized material was observed to act as a potential
catalyst for the synthesis of biscoumarins. An environmentally benign catalytic protocol for the
synthesis of biscoumarin scaffolds was developed, in which a small amount 2.5mol% of SiO2-
BHSB is sufficient to act as an efficient and reusable catalyst for the transformation in aqueous-
based ethanol as a solvent. Structurally, diverse aldehydes underwent the developed catalytic
protocol smoothly to produce the corresponding biscoumarin derivatives in good to excellent
yields. Structures of the synthesized compounds were confirmed from their physical and analyt-
ical studies. At the end, it is worthy to remark that there is a wide scope to develop catalytic pro-
tocols for the synthesis of fine chemicals and bioactive compounds using SiO2-BHSB as a
recyclable heterogeneous catalyst.
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Abstract: Amongst many nitrogen-containing heterocycles, carbazole frame is the building block of various biologically active compounds, 
including both synthetic and natural products of which its antimicrobial and antifungal activities are the most examined. In this review, 3, 4 and 
N- substituted carbazole derivatives and their antimicrobial activities are discussed (articles published from 2013 to 2022). 
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INTRODUCTION 
ESEARCH on novel chemotherapy has been very 
important in controlling different types of diseases in 

humans and animals caused by microorganisms. Various 
chemotherapeutic agents are isolated from living organisms 
known as antibiotics such as penicillin and tetracycline or 
they are certain synthetic organic compounds such as 
sulpha drug.[1] Microorganisms generated disease have the 
capacity to resist these chemotherapeutic agents, thus 
such microbial strains produce a major effort in the 
treatment of microbial infections.[2] To overcome this 
intricacy study of new antimicrobial agents is a continual 
process, which led to develop new chemical compounds 
with good antimicrobial activities and suitable to be used 
as chemotherapeutic agents.  
 The heterocyclic framework of aromatic carbazole is 
an advantageous pharmacophore skeleton found in various 
biologically active compounds from different sources, 
covering both natural and synthetic sources. The parent 
compound 9H-carbazole was first described by Graebe and 
Glaser in 1872, which was obtained from the anthracene 
fraction of coal tar distillate.[3] This outline has since grown 
the consideration by researchers as it has been highlighted 
in molecules that intervene a wide range of biological 
activities.[4,5] The biological properties of active carbazole 
alkaloids, isolated mainly from taxonomically similar plants 
of the genus Murraya,[6–9] Clausena[10–12] and Glycosmis[13–15] 
that belongs to the citrus family Rutaceae caused that 

many research groups became interested in the structural 
modifications of natural compounds and synthesis of new 
derivatives of carbazole.[16] The biologically active fused 
aromatic systems are known of natural origin (alkaloids) or 
synthetic drugs containing component of carbazole[17–26] in 
their structure which possess anti-cancer, antibacterial, 
antifungal, anti-inflammatory, hepatoprotective, anti-HIV, 
antiprotozoan and sedative properties, or topoisomerase II 
inhibition ability. 
 In this article I will present the antimicrobial 
potential of carbazole derivatives reported from the years 
2013 to 2022, which are interesting because of their 
biological and photophysical properties.[27–46] Some of 
carbazole compounds have a very high activity against 
many organisms, bacteria, fungi, parasites.[34–38]  

Antibacterial and Antifungal  
Activities of Carbazoles 

A potent antibacterial activity of N-substituted benz-
imidazole incorporating with carbazole namely N-((1-(4-
(9H-carbazol-9-yl) butyl)-1H-benzo[d]imidazol-2-yl) methyl)-
2-fluoroaniline 1 and its corresponding salt 1a (Figure 1.) 
reported by HuiZhen and coworkers in 2013. 
 The antibacterial activity revealed that carbazole 1 
gave good antibacterial activity against B. subtilis (MIC =  
64 μg/mL) and P. aeruginosa (MIC = 64 μg/mL), than the 
reference drug chloromycin. Corresponding salt com-
pound 1a showed the best antibacterial activity, at the 
concentrations of 8–32 μg/mL, it is more sensitive to the  
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S. aureus, B. subtilis, and M. luteus species (MIC = 8 μg/mL) 
which was nearly equipotent or even higher to the refer-
ence drug chloromycin 8 μg/mL. The study has shown the 
introduction of carbazole ring was advantageous to the 
benzimidazole for enhancement antimicrobial activity.[47]  
Synthesis and spectral characterization of sulfonamide and 
carbamate derivatives of 4-(oxiran-2-ylmethoxy)-9Hcarbazole 
(2a–d and 3a–f) as shown in Figure 2. were described by 

Venkata et al. in 2013, in order to study the change in subs-
tituent might affect the antimicrobial activity. Antimicrobial 
property of all the synthesized compounds (2a–d and 3a–f) 
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Figure 3. Structures of the carbazole derivatives reported by Bandgar et al.[49,50] 
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examined against (S. aureus, B. subtilis, and E. coli) bacterial 
and (F. oxysporum, C. albicans, and A. niger) fungal strains 
through the agar well diffusion method. All the compounds 
(2a–d and 3a–f) discovered modest to strong antimicrobial 
activities at a concentration of 200 μg/mL, and the results 
were comparable to the standard drugs ciprofloxacin and 
fluconazole. Amongst the synthesized compounds, the 
functional groups such as p-NO2 in 2a and 3e, p-Cl-m-NO2 
in 2c against C. albicans, p-Br in 2b against E. coli, p-F-m-Cl 
in 2d, CCl3 in 3a and isobutyl in 3c against B. subtilis might 
be responsible for good activity.[48] 
 In 2013, Bandgar et al. evaluated the antimicrobial 
activities of a series of novel carbazole chalcones (4a–o) 
(Figure 3.). The antibacterial screening data of the 
compounds 4a, 4e and 4m displayed significant inhibition 
zone (4.5 ± 2.5 mm) against all the three bacterial growth. 
Whereas compounds 4b, 4g and 4h inhibited (6.0 ± 1.5 mm) 
zone against P. vulgaris and E. coli selectively, but 
compounds 4c and 4o had valuable results against S. aureus 
with inhibition zone (2.5 ± 2.0 and 4.5 ± 1.5 mm) 
respectively. Compounds 4h and 4m showed good 
antifungal activity with inhibition zone (5.5 ± 5.0 mm),  
while the rest of the compounds were inactive against  
C. albicans.[49] 
 The pyrimidine moiety is one of the most exposed 
structures found in the nucleic acid. The same year, Bandgar 
et al. also described the antimicrobial activity of a series of 
new carbazole substituted aminopyrimidines (5a–p) as 
drawn in Figure 3. using the disk diffusion method. 
Carbazole derivatives 5c, 5g, 5j and 5o showed upright 
activity in the range of inhibition zone (18.0 ± 8.00 mm) 
against all designated bacterial strains at a concentration of 
1 mg/mL as compared to standard drug tetracycline. 
Notably carbazole derivative 5o showed comparable 
activity with inhibition zone (18 ± 10 mm) as that of 
standard, against B. subtilis. S. aureus and S. flexenari. On 
the other hand, compounds 5b, 5c, 5m and 5o showed 
good activity with inhibition zone (15 ± 10 mm) against 
selected fungal strains at a concentration of 1 mg/mL as 

compared to standard drug nystatin. Compounds 5m and 
5o showed comparable activity with inhibition zone (14 ± 
10 and 15 ± 12mm) respectively as that of standard, against 
C. albicans and A. niger.[50] 

 In 2014, Sharma et al. evaluated the antimicrobial 
activity of a series of new carbazole derivatives (6a–o) 
(Figure 4.) with oxadiazole moiety is one of the most 
perceptible pharmacophore integrated at position 9 of 
carbazole nucleus. The antimicrobial activity was inter-
preted in terms of diameter (mm) of the zone of inhibition 
by disc diffusion method on nutrient agar medium against 
four bacterial and two fungal strains. Among the screened 
carbazoles, 6a, 6d, and 6n were found to be more potent 
with inhibition zone (16.2 ± 0.1, 24.2 ± 0.1 and 23.6 ± 
0.1mm) against all tested bacterial and fungal strains at a 
concentration 50 μg/mL respectively.[51] 
 Synthesis of solvent–free carbazole chalcones (7a–i) 
and its benzofuran derivatives (8a–i) (Figure 6) described by 
Ashok et al. in 2014. The antimicrobial activity was 
examined against Gram positive S. aureus (ATCC 6538),  
B. subtilis (ATCC 6633) and Gram negative E. coli (ATCC 
25922), K. pneumoniae (ATCC 13883) bacterial and three 
pathogenic fungi, F. oxysporum, A. nigerzeae, and A. flavus 
strains at 20 and 40 μg/mL concentrations. All the 
compounds (7a–i and 8a–i) revealed moderate to strong 
antimicrobial activities at concentration of 20 μg/mL, and 
the results were comparable to the standard drugs 
ciprofloxacin and amphotericin-B.[52] 
 In 2014, Malani et al. explored the antimicrobial 
activities of carbazonyloxy β-hydroxy amine-based 
chalcones (9a–l) as shown in Figure 5. by the broth dilution 
method. New chalcones were examined with bacteria  
E. coli (MTCC 443), P. aeruginosa (MTCC 1688), S. aureus 
(MTCC 96), S. pyogenus (MTCC 442C), Fungi C. albicans 
(MTCC 227), A. clavatus (MTCC 1323) taking ampicilin, 
chloramphenicol, ciprofloxacin, gentamycin, norfloxacin 
and nystatin as standard drugs respectively. From this 
study, it was determined that compounds 9b and 9j proved 
at least as persuasive as the reference drug ampicillin in the 
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Figure 4. Structures of carbazole incorporated oxadiazole derivatives (6a–o).[51] 
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case of E. Coli. The antifungal activity of compounds 9a, e, 
g and j that they were comparable with the standard drug 
greseofulvin in the case of C. albicans, while compounds 4d 
and f are more active compared with Greseofulvin in the 
case of C. albicans.[53] 

 Antimicrobial activities of carbazole incorporated 
chromones (10a–i) as drawn in Figure 6. reported by Ashok 
and colleagues in 2015. The antimicrobial activity examined 
against four bacterial and two fungal strains using agar 
diffusion and poison plate technique express in terms  
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Figure 5. Structures of carbazonyloxy β-hydroxy amine-based chalcones (9a–l).[53] 
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zone of inhibition diameter (mm). Amongst all, compounds 
10a, 10h and 10i showed maximal zones of inhibition in the 
range of (30–12 mm, 32–13 mm, 33–14 mm), respectively, 
against the tested bacterial and fungal strains. The study 
exposed the importance of 3-hydroxy chromenones with 
electron releasing groups, such as methoxy, ethoxy and 
unsubstituted compounds, showed the maximum activity.[54] 
 In 2016, Ashok et al. also reported the novel series of 
1,2,3- triazolo- carbazole chalcones (11a–i) as depicted in 
Figure 6. and examined against a panel of bacterial and 
fungal microorganism by the agar diffusion and poison 
plate technique using ciprofloxacin, tetracycline and 
hymexazole standard drugs respectively. The zone of 
inhibition (in mm) was compared with standard drugs, 
antimicrobial data revealed that compounds 11e, 11g, and 
11h showed maximum zone of inhibition in the range of 
(23.5–15.8mm, 24.2–16.7mm and 24.5–14.2mm) respec-
tively against Gram-positive and negative bacterial strains 
at the concentration of 20 μg/mL, as compared the 
standards tetracycline. Among all, compounds 11e, 11f, 
11g, 11h and 11i showed maximum activity against the 
tested fungal strains.[55]  
 In 2016, Addla et al. reported the preparation of new 
carbazole aminothiazoles and their precursor’s (13a–j and 
12a–j) as DNA-targeting prospective antimicrobial agents 
(Figure 7.). All new compounds were examined against four 
Gram-positive bacteria, four Gram-negative bacteria and 
five fungi by the standard two folds serial dilution method 
using chloromycin, norfloxacin and fluconazole as standard 
drugs. The antimicrobial data revealed that, better 
antibacterial efficacies in preliminary active screening 
displayed by the carbazole aminothiazoles (13a–j) than 
their precursors (12a–j) which exposed that the 2-amino-
thiazole fragment was important in exerting antimicrobial 
activities. Noticeably heptyl derived carbazole amino-
thiazole 13f could efficiently inhibit the growth of 
methicillin-resistant S. aureus (MRSA) with a MIC value of  
4 µg/mL, which was greater to the reference drugs. 
Compounds 13h and 13i exhibited good activities against 
fluconazole-insensitive A. flavus with MIC value 128 µg/mL 
as compared to that fluconazole (MIC = 256 µg/mL). Study 
also exposed moderation in length of alkyl groups exhibited 
good activities against some tested bacteria. Specifically,  

N-pentyl carbazole aminothiazole 13d displayed strong 
inhibition against P. aeruginosa with a MIC value of 2 µg/mL, 
which was 8-fold more active than reference drug 
chloromycin (MIC = 16 µg/mL). From this study, it was 
determined that prepared compounds with long hydro-
phobic alkyl chains such as pentyl and heptyl groups 
showed superior antimicrobial activities.[56] 
 In 2017, Clausen et al. reported four N-substituted 
carbazoles (14a–d) (Figure 8.) in order to study the 
inhibition activity of the fungal plasma membrane H+-
ATPase, which is necessary for fungal growth and survival. 
The H+-ATPase inhibitory activity of the synthesized 
compounds conducted at a concentration of 20 µM. The 
compounds were characterized for H+-ATPase inhibition 
and antifungal activity by means of an ATP hydrolysis assay 
and a fungal growth inhibition assay, respectively. The 
study has shown that compounds (14a–d) were identified 
as novel H+-ATPase inhibitors and the ATP hydrolysis IC50 
was determined together with antifungal activity against S. 
cerevisiae and C. albicans. Notably compound 14d with two 
chloro substituents was recognized as the most potent 
antifungal compound, which displayed H+-ATPase 
inhibitory activity. Also compound 14a displayed the 
highest potency for H+-ATPase inhibition, with IC50 values of 
1.1 and 2 mM for C. albicans and S. cerevisiae H+-ATPase, 
respectively, as compared to the parent compounds.[57] 
 PLX01107 and PLX01008 are xenomycins as drawn in 
Figure 9., new subclass of antimicrobial carbazole deriv-
atives were designed and prepared by Zhanataev et al. in 
2017. Both newly synthesized compounds showed strong anti-
fungal activity in vitro and examine potential genotoxicity. The 
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antimicrobial activity performed by bacterial reverse mutation 
assay (Ames test), in vitro cytokinesis-block micronucleus 
assay, and chromosome aberration test in mouse bone 
marrow cells, to investigate the possible genotoxicity of these 
compounds. The bacterial reverse mutation assay was 
performed with S. typhimurium TA98, TA100, TA1535, TA1537 
and combination of E. coli WP2 uvrA and WP2 [pKM101] 
bacterial strains using the Ames MPF™ PENTA I kit and Aroclor 
1254-induced rat liver fraction S9. The results obtained by 
Ames assays observed that, PLX01107 did not show a 
progressive response for S. typhimurium or E. coli strains in 
the absence or presence of S9, but it displayed a cytotoxic 
response for strains TA98, TA100, and TA1535 without S9. In 
contrast, PLX01008 was found to be mutagenic in S. 
typhimurium strains TA98 and TA1537, with or without S9 
activation. The strain TA1535 indicated optimistic response 
only at 0.4 μg/mL in the absence of S9.[58] 
 In 2017, Chakraborty et al. reported the preparation 
and antimicrobial activities of fluorocarabazole and their 
respective quinone derivatives (15a–c and 16a–c) as 
presented in Figure 10. using standard agar well diffusion 
method (NCCLS 2000). 
 Compound 15b and its corresponding quinone 
compound 16b showed the positive activity against E. coli, 
B. subtilis and Methicillin-resistant S. aureus with MIC value 
25 µg/mL. Also compound 15c and 16c showed optimistic 
activity against E. coli and S. aureus with MIC value 50 

µg/mL. The present study lead to the conclusion that 
properly substituted fluorocarbazole and fluorocarbazole 
quionones are highly promising scaffolds for further 
antimicrobial evaluation.[59] 
 Chromone is a natural molecule existing in the diet 
of human and animals and shows less toxicity to 
mammalian cells. In 2018, Kadnor et al. examined the 
antimicrobial activity of new carbazole substituted 
chromone derivatives (17a–d, 18a–d and 19a–d) as drawn 
in Figure 11. using agar diffusion method ampicillin as 
standard drug. Carbazole derivatives 17b and 17d exhibited 
strong activities against Gram positive bacteria S. lactis and 
inhibit the growth of Penicillium sp. and C. albicans fungal 
strain as compare to the standard drug ampicillin. Notably, 
Compound 18a gave nearly equipotent antibacterial 
broader bioactive spectrum against P. putide B. subtilis and 
S. lactis strains as compared to the standard drugs, while 
compounds 19b and 19c exhibited a broad spectrum 
against S. lactis bacterial strain. The results also suggested 
that electron withdrawing substituent chlorine and 
bromine on aromatic ring were more active against all test 
microbes than compounds with electron donating ones.[60] 
The same year, Kadnor and coworkers also investigated new 
9-ethyl-9H-carbazole-3-carboxylic acid derivatives (20a–e, 
21a–e and 22a–e) as depicted in Figure 11. Carbazole acid 
derivatives were examined against four bacteria (E. coli,  
P. putide, B. subtilis, and S. lactis) and three fungi (A. niger, 
Penicillium sp. and C. albicans) by agar well diffusion 
method using ampicillin and greseofulvin as positive 
control. Compounds 20a, 20b and 20c gave stronger 
antibacterial efficacies and broader bioactive spectrum 
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Figure 9. Structures of xenomycins PLX01107 and 
PLX01008.[58] 
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against S. lactis, and B. subtilis with the MIC values in the 
range (30–40 μg/mL) and broad spectrum of antifungal activ-
ities (45–55 μg/mL) against C. albicans and Penicillium sp. 
as comparable to the standard drug ampicillin and 
griseofulvin (25 μg/mL) respectively. Compounds 21a, 21b, 
21c, 21d and 21e displayed significant inhibition activities 
with a MIC ≥ 30 μg/mL against all tested fungal strains, 
while compounds 21d and 21e are passive for C. albicans 
fungal strain. Carbazole based pyrazoles 22a and 22b show 
remarkable antibacterial activity against tested pathogens, 
namely S. lactis, B. subtilis and P. putide compared to 
standard drug ampicillin at lowest concentration ranging 
from (35−55 μg/mL) with nearly equipotent of inhibition 
zone.[61] 
 In 2020, Bordei Telehoiu et al. reported the synthesis 
of 6-chloro-9H-carbazol and 1,3,4-oxadiazol scaffolds (23a–
c and 24a–c) as drawn in Figure 12. This novel adducts were 
examined against a panel of Gram-negative E. coli (ATCC 
25922), P. aeruginosa (ATCC 27853) and Gram-positive  
S. aureus (ATCC 25923), E. faecalis (ATCC 29212) bacteria, 
as well as the fungal strain C. albicans (ATCC 90029) using 
the microdilution method in liquid Mueller Hinton medium 

at a concentrations in the range of 5–0.009 mg/mL. The 
best antibacterial was recorded for 23a against E. coli, with 
MIC of 1.25 mg/mL and for 24c against C. albicans, with MIC 
of 0.625 mg/mL.[62] 
 In 2021, Xue and coworkers synthesized a collection 
of 30 compounds with carbazole moiety containing an 
aminoguanidine, dihydrotriazine, thiosemicarbazide, semi-
carbazide or isonicotinic moiety (25a–l, 26a–k, 27a–b, 28, 
and 29a–d) as depicted in Figure 13. These thirty deriv-
atives were screened against two Gram-positive strains  
S. aureus (4220), S. mutans (3289), one clinical isolate  
of multidrug-resistant Gram-positive bacterial strain 
Methicillin-resistant S. aureus (CCARM 3167), one Gram-
negative strain E. coli (1924) and one fungus C. albicans 
(7535). The MIC values were obtained using a 96-well 
microtiter plate and a serial dilution method, with positive 
controls gatifloxacin and moxifloxacin and DMSO as a 
negative control. All microorganisms showed susceptibility 
to most of the compounds with MICs in the range of 1–64 
µg/ml. Compounds 25f, 25l, 26d and 26e exhibited strong 
antibacterial activity against Gram-positive strains and one 
Gram-negative strain with MIC values of 0.5 or 1 µg/ml. In 
addition, compound 25f demonstrated a strong inhibitory 
activity (MIC of 0.5 µg/ml) against E. coli 1924, which was 
four-fold greater than the activities of moxifloxacin and 
gatifloxacin with (MIC of 2 µg/mL). The phenyl ring 
substituted compounds 25a–l and 26a–k exhibited 
significant effect on the potency of antimicrobial activities. 
The antibacterial activities were as follows order: phenyl 
group > 2,4-dichloro-substitutions > 4-CH3> halogen 
substitutions>benzyl group > 4-CN > alkyl group. Moreover, 
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bromo- and chloro-substitutions on the phenyl ring in 
compounds 25a–l were observed to improve their 
antifungal activity against C. albicans 7535.[63] 
 In 2021, Zawadzka and collegues reported (4- 
(4-(benzylamino)butoxy)-9H-carbazole) derivative 30 
(Figure 14.) was prepared in two substitution steps from 
commercially available 4-hydroxycarbazole following 
standard procedures. This new adduct was studied against 
a Gram-positive S. aureus (ATCC 29213), S. aureus (ATCC 
25923), S. aureus (ATCC 6358), S. aureus (ATCC 700699),  
S. aureus (ATCC 43300), S. epidermidis (ATCC 12228),  
S. pyogenes (ATCC 19615) and Gram-negative E. coli (ATCC 
25922), P. hauseri (ATCC 13315), P. aeruginosa (ATCC 
15442) bacteria, as well as fungi C. albicans (ATCC 10231), 
A. flavus (ATCC 9643). 
 Antimicrobial study exposed, that fungi and Gram-
negative bacteria were more resistant than Gram-positive 
strains, although a positive control is needed to fully assess 
these bacterial strains.[64] 
 Lastly, Kamala and coworkers reported the series of 
novel carbazole thiazolidinedione hybrid derivatives  
(31a–j) as drawn in Figure 15. This adduct were examined 
against gram-positive bacterial strains (S. aureus) and 
gram-negative bacterial strains (P. aeruginosa, E. coli,  
K. pneumonia) at concentration of 100 μg/mL. The results 
were compared with the activity of the standard antibiotic 
ciproflaxacin and expressed as zone of inhibition in milli-
meter. Compounds 31c and 31h with nitro at second and 
bromo at fourth position on phenyl ring respectively have 
shown good antibacterial activity. On the other hand 
unsubstituted 31a, chloro substituted 31d, 31e, 31f, 31i, 
fluoro substituted 31g and cyano substituted 31j 
compound have shown modest zone of inhibition.[65] 

CONCLUSIONS 
This review summarizes acknowledged reports about 
various carbazole derivatives and their antimicrobial 
activities that are attractive structural patterns in synthetic 
organic chemistry due to their tunable electronic and steric 
properties. As summarized above, the existence of 
carbazole moieties has confirmed operative in improving 
the antimicrobial activity of various compounds. Several 
carbazole derivatives displayed strong in vitro inhibitory 
activity against bacteria and fungi with analogous or even 
greater activity when compared to the standard drugs. 
Consequently, this review may therefore propose an 
important resource to assist scientists in designing of new, 
convincing, and safe carbazole derivatives against microbial 
diseases in the near future. 
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ABSTRACT
A novel heterogeneous pumice supported perchloric acid catalyzed synthe-
sis of tetrahydrobenzo[b]pyran has developed via multi-component con-
densation of aromatic aldehydes, dimedone and malononitrile. The catalyst
was characterized by IR, XRD, EDS, SEM, and TGA techniques which con-
firmed the formation novel pumice supported perchloric acid. The present
protocol proved to have numerous advantages like one-pot reaction, good
yield, short reaction time, inexpensive catalyst, recyclability and reusability
of the catalyst, simple experimental and work up procedure, and purifica-
tion of targeted molecules without column chromatography.
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Introduction

In the last two decades, volcanic pumice and pumice based materials have been employed in
divergent organic transformations such as reduction reaction, oxidation reaction, photo catalytic
degradation, multi-component condensation reaction and also water treatment process. These
varied reactions are achieved because large silica content of the pumice which was converted into
active catalytic material. The appreciable advantages of pumice supported catalytic materials are
heterogeneous nature, good surface area, excellent catalytic activity, thermal stability, high poros-
ity, high absorption capacity, recyclability and reusability, etc.1–9

Multi-component reaction (MCR) approach has gained excellent impact in the discovery of
heterocyclic compounds due to the synthetic efficiency and economy. The MCR strategy is a one
step synthetic operation with incredibly well-designed and quick approach to discover highly
functionalized and complex biologically active molecules. It has also advantages like high flexibil-
ity, high atom economy and high selectivity.10–12 The synthesis of tetrahydrobenzo[b]pyrans is
also an important illustration of the multi-component reaction.

The tetrahydrobenzo[b]pyran derivatives are extremely significant to the organic chemists
because of their prominent biological and pharmacological activities. They are fascinating poly-
functionalized compounds which possess a wide variety of biological activities like anti-allergic,
antibacterial, anti-coagulant, anti-tumor, calcium channel antagonists and diuretic etc. Along with
biological activities, some derivatives of tetrahydrobenzo[b]pyran have been employed as photo-
active materials and agrochemicals. They are also used in cosmetics and pigments.13–18 The some
illustration of biologically active tetrahydrobenzo[b]pyran derivatives shown in Figure 1.
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In a vision of the enormous scope of tetrahydrobenzo[b]pyrans there is increased attention in devel-
oping new routes for their synthesis. The synthetic protocols include numerous catalyst such as tetrae-
thylammonium perchlorate,19 CTMAB-bentonite,20 nano-titania sulfuric acid,21 ultrasound,22 MNPs–
PhSO3H,

23 molecular sieve-supported zinc catalyst,24 silica nanoparticles,25 oxyammonium-based ionic
liquid,26 MeSO3H,

27 PEG-SO3H,
28 WEMFSA,29 tungstic acid functionalized mesoporous SBA-15,30

amine-functionalized SiO2@Fe3O4 nanoparticles,31 choline chloride-oxalic acid,32 L-proline,33 chito-
san,34 xanthum gum supported Fe3O4,

35 phosphotungstic acid supported on SiO2@NHPhNH2 func-
tionalized nanoparticles of MnFe2O4,

36 poly(Ethyleneoxide)-based magnetic nanocomposite,37 magnetic
aluminosilicate nanoclay,38 amine-functionalized silica-supported magnetic nanoparticles,39 etc.

In continuation of our work in developing new methodologies for the synthesis of active com-
pounds40 herein, we have reported an efficient and sustainable protocol for the synthesis of tetra-
hydrobenzo[b]pyrans via multi-component reaction of aromatic aldehyde, dimedone and
malononitrile in the presence of novel pumice supported perchloric acid. The present work has a
number of advantages in comparison with the literature reported protocols, such as good yields,
high atom economy, smooth reaction conditions, simple work-up procedure and purification of
targeted molecule without column chromatography.

Experimental procedures

General

The progress of the reaction was monitored by thin-layer chromatography (TLC) by using silica
gel coated aluminum plates and plates are visualized with UV light. Melting points were taken in
an open capillary and are uncorrected. 1H NMR (500MHz) and 13C NMR (125MHz) spectra
were recorded with the BRUCKER AVANCE NEO 500MHz in CDCl3 using TMS as an internal
standard. IR spectra were taken on PerkinElmer FTIR Spectrometer. The pumice supported
perchloric acid catalyst was prepared in the laboratory. Mass spectra were recorded on a MALDI
SYNAPT XS HD Mass spectrometer.

General procedure for the preparation of pumice supported perchloric acid

Perchloric acid (3.0 gm) was added to the suspension of pumice (45 gm) in diethyl ether (60mL)
with constant stirring for 2 h. The mixture was concentrated and the residue was washed with
acetone to remove unreacted perchloric acid. The resultant residue was dried under vacuum at
80 �C for 6 h to afford free Pumice Supported Perchloric acid (Pumice@HClO4) (Scheme 1).

General procedure for the synthesis of tetrahydrobenzo[b]pyran derivatives (4a–m)

In a 100mL round bottom flask, the mixture of substituted benzaldehyde (2mmol), dimedone
(2mmol), malanonitrile (2mmol) and pumice supported perchloric acid (100mg) was taken in
10mL of ethanol (Scheme 2). The resulting reaction mixture was refluxed for appropriate time.
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Figure 1. Some examples of biologically active tetrahydrobenzo[b]pyran derivatives.
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The progress of the reaction was confirmed by TLC. To separate out the catalyst pumice sup-
ported perchloric acid, the content was filtered at hot condition. After cooling the filtrate, the
solid was separate out which was dried and purified by recrystalization using ethanol.

Result and discussion

The pumice supported perchloric acid was prepared from volcanic pumice and perchloric acid by
simple agitation in diethyl ether which has characterized by various analytical techniques such as
FTIR, XRD, EDAX, SEM, and TGA. The FTIR spectra of pumice supported perchloric acid
showed that, the significant absorption band at 3413.95 cm�1 corresponding to the acidic proton
in Pumice@HClO4. In addition to this, the band appeared at 1637.53 cm�1 is due to the (Cl¼O)
bond and the bands at 1147.39 and 1090.09 cm�1 are related to Si–O–Si bonds (Figure 2(a)).
These bands are not observed in FTIR of plane pumice (Figure 2(c)) except the band at
1036.86 cm�1due to Si–O–Si bonds. This clearly indicates that, the perchloric acid was supported
on pumice. Also the FTIR of recycled pumice@HClO4 (Figure 2(b)) did not show any noteworthy
deviation from pure pumice@HClO4.

The EDAX analysis showed the composition of Pumice supported perchloric acid. This indi-
cates that the synthesized catalyst composed of Si, O, Al, K, and Cl elements. The higher percent-
age of chlorine and oxygen proved that the perchloric acid was supported on Pumice (Figure
3(a)). Also the EDAX of recycled pumice@HClO4 (Figure 3(b)) did not show any noteworthy
composition of elements.

The XRD pattern of the catalyst was exhibited the broad characteristic peak between diffrac-
tion angle 2h¼ 15-30 which demonstrated the amorphous nature of the Pumice supported
perchloric acid (Figure 4(a)). Also the XRD of recycled pumice@HClO4 (Figure 4(b)) did not
show any significant change.

The SEM image showed that, pure as well as recycled pumice supported perchloric acid has
no particular size and morphology (Figure 5(a,b)).

To investigate the thermal stability of the newly prepared pumice supported perchloric acid
and pumice, the thermogravimetric analysis (TGA) was performed in the temperature range from
30 to 650 �C as shown in Figure 6(a,b). The literature survey revealed that, the –OH groups

O H Diethyl Ether

Stirring at RT
+

Pumice Perchloric Acid Pumice Supported Perchloric Acid

ClO

O

OH

O

O H

O H

ClO

O

OH

OO H

O H

O H

Scheme 1. Preparation of pumice supported perchloric acid.
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Scheme 2. Synthesis of tetrahydrobenzo[b]pyran derivatives (4a–m).
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Figure 2. (a) FTIR of pumice supported perchloric acid (Pumice@HClO4). (b) FTIR of recycled pumice supported perchloric acid
(Pumice@HClO4). (c) FTIR of pure pumice.
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present in the catalytic material leave the structure by dehydration reaction at high temperature.
The TGA of pumice supported perchloric acid (Figure 6(a)) and pumice (Figure 6(b)) showed
that, 2.1% weight lost below 140 �C due to the removal of –OH groups in the form of water mol-
ecule present in the catalyst.

Study of acidic nature of pumice Supported perchloric Acid

The acidic nature of the catalyst was determined potentiometrically by following the standard
method.4 Initially the 0.1 g of pumice supported perchloric acid catalyst was taken in a titration
flask containing 10ml distilled water and the resultant mixture was titrated against the 0.1N
NaOH solution. The reading data of titration was used for plotting the graph of DE/DV against
the volume of 0.1N NaOH. From the graph, the acidic nature of catalyst was found to be
0.9mmol/g at the equivalence point (Figure 7).

Optimization of the Reaction condition

The multi-component condensation reaction of 4-methyl benzaldehyde, dimedone and malononi-
trile was selected as pilot reaction (Scheme 3) to choose the optimize conditions for the synthesis
of tetrahydrobenzo[b]pyran. Initially, the reaction was carried out under varying conditions such

Figure 3. (a) EDAX of pumice supported perchloric acid (Pumice@HClO4). (b) EDAX of recycled pumice supported perchloric acid
(Pumice@HClO4).
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as the amount of catalyst, time, temperature and solvent medium (Table 1). The good result was
obtained for pilot reaction with 100mg of pumice supported perchloric acid catalyst (Table 2) in
the presence of ethanol under reflux condition.

After the investigation of the exact optimized condition, it was employed for the synthesis of
different tetrahydrobenzo[b]pyran derivatives by one-pot three component condensation of
diverse aromatic aldehydes with malononitrile and dimedone. The best result was obtained for
aldehydes containing electron donating as well as electron withdrawing groups in high yields and
short period of time without appearing side product (Table 3).

Spectral data selected compounds

4a: 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4-phenyl-4H-chromene-3-carbonitrile
White color; m.p. 222–224 �C; FTIR (cm�1): 3396.57 (N–H), 2198.93 (CN), 1680.23 (C¼O),
1660.44 (C¼C), 1603.25 (C¼C), 1451.14 (C¼C), 1369.68 (C–O), 1213.49 (C–N); 1H NMR
(CDCl3, 500MHz) d: 1.04 (s, 3H, –CH3), 1.11 (s, 3H, –CH3), 2.18–2.25 (m, 2H, –CH2–), 2.45 (s,
2H, –CH2–), 4.40 (s, 1H, –CH–), 4.57 (s, 2H, –NH2), 7.19–7.30 (m, 5H, Ar–H) ; MS (ESI):
m/z¼ 295.1469 [MþH].

Figure 4. (a) XRD of pumice supported perchloric acid (Pumice@HClO4). (b) XRD of recycled pumice supported perchloric acid
(Pumice@HClO4).
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4b: 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4-p-tolyl-4H-chromene-3-carbonitrile
White color; m.p. 214–216 �C; 1H NMR (CDCl3, 500MHz) d: 1.04 (s, 3H, –CH3), 1.11 (s, 3H,
–CH3), 2.17 (m, 2H, –CH2–), 2.21 (s, 2H, –CH3), 2.44 (s, 2H, –CH2–), 4.36 (s, 1H, –CH–), 4.51
(s, 2H, –NH2), 7.08 (m, 4H, Ar–H).

4c: 2-amino-4-(4-ethylphenyl)-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4H-chromene-3-
carbonitrile
White color; m.p. 222–224 �C; FTIR (cm�1): 3410.74 (N–H), 2188.62 (CN), 1682.53 (C¼O),
1652.20 (C¼C), 1618.21 (C¼C), 1509.02 (C¼C), 1369.47 (C–O), 1214.05 (C–N); 1H NMR
(CDCl3, 500MHz) d: 0.99 (s, 3H, –CH3), 1.10 (s, 3H, –CH3), 1.26 (t, 3H, –CH3), 2.19 (q, 2H,

Figure 5. (a) SEM of pumice supported perchloric acid (Pumice@HClO4). (b) SEM of recycled pumice supported perchloric acid
(Pumice@HClO4).
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Scheme 3. Pilot reaction for the synthesis of tetrahydrobenzo[b]pyran (4b).
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–CH2–), 2.44 (m, 2H, –CH2–), 2.59 (m, 2H, –CH2–), 4.37 (s, 1H, –CH–), 4.56 (s, 2H, –NH2),
7.09–7.14 (m, 4H, Ar–H) ; 13C NMR (CDCl3, 500MHz) d: 15.33, 27.76, 28.64, 28.87, 32.21,
35.12, 40.70, 50.70, 63.70, 114.18, 118.81, 127.41, 128.09, 140.48, 142.93, 157.47, 161.47, 195.97;
MS (ESI): m/z¼ 323.1790 [MþH].

4d: 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-4H-chromene-3-
carbonitrile
White color; m.p. 178–180 �C; 1H NMR (CDCl3, 500MHz) d: 0.97 (s, 3H, –CH3), 1.05 (s, 3H,
–CH3), 2.11–2.28 (m, 2H, –CH2–), 2.54 (s, 2H, –CH2–), 4.38 (s, 1H, –CH–), 7.17 (s, 2H, –NH2),
7.45 (d, 2H, J¼ 8.7, Ar–H) , 8.17 (d, 2H, J¼ 8.7, Ar–H) ; 13C NMR (CDCl3, 500MHz) d: 26.83,
28.14, 31.69, 35.55, 49.75, 56.88, 111.63, 119.18, 123.53, 128.49, 146.15, 152.15, 158.47, 162.96,
195.54.

Recyclability and reusability of pumice supported perchloric acid

The recovery and reusability of the pumice supported perchloric acid catalyst make the protocol
most valuable, unique and beneficial. After the completion of the reaction, the catalyst was sepa-
rated from the reaction media at hot condition. It was washed with hot ethanol followed by
chloroform and was dried at 80 �C temperature. The recovered catalyst was characterized by
FTIR, EDAX, XRD and SEM as shown in Figures 2(b) to 5(b). The reusability of the catalyst was
studied on the pilot reaction. The catalyst has been recycled and reused three times with 88, 87
and 84% of product yields, respectively.

The comparison of the efficiency of pumice supported perchloric acid catalyst with the various
reported protocols are mentioned in Table 4. From this investigation, it was found that the pum-
ice supported perchloric acid catalyst showed a noteworthy activity for the synthesis tetrahydro-
benzo[b]pyran derivatives. Also a current protocol has many advantages in comparison with

Table 2. Optimization of amount of catalyst for the synthesis of tetrahydrobenzo[b]pyran.

Entry Amount of catalyst (mg) Time (min) Yield (%)

1 Absence of catalyst 60 NR
2 25 60 Trace
3 50 60 55
4 75 60 80
5 100 60 88
6 125 60 88

Table 1. Optimization of reaction conditions for the synthesis of tetrahydrobenzo[b]pyran (4b).

Entry Solvent system Temperature Time (min) Yield (%)

1 Grinding RT 60 NR
2 H2O RT 120 NR
3 EtOH RT 120 NR
4 EtOHþH2O (50%) RT 120 NR
5 H2O Reflux 120 Trace
6 EtOH Reflux 60 88
7 EtOHþH2O (50%) Reflux 60 40

Reaction condition: 4-methyl benzaldehyde (2mmol), malononitrile (2mmol), and dimedone (2mmol), pumice supported
perchloric acid catalyst (100mg).
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Table 3. Synthesis of tetrahydrobenzo[b]pyran derivatives (4a–m).

Entry Aldehyde Benzopyran derivative Time (min.) Yield (%)

M.P.(�C)

Observed Reported (ref.)

1 O H

O NH2

CN

O

4a

50 80 222–224 22415

2 O H

CH3
O NH2

CN

O

CH3

4b

60 88 214–216 21315

3 O H

O NH2

CN

O

4c

45 82 222–224 155–15818

4 O H

NO2
O NH2

CN

O

NO2

4d

50 84 178–180 17915

5 O H

Br

O NH2

CN

O

Br

4e

50 90 202–204 200–20316

(continued)
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Table 3. Continued.

Entry Aldehyde Benzopyran derivative Time (min.) Yield (%)

M.P.(�C)

Observed Reported (ref.)

6 O H

Cl
O NH2

CN

O

Cl

4f

45 90 198–200 20615

7 O H

OH

O NH2

CN

O

OH

4g

65 77 220–222 20515

8 O H

N
O NH2

CN

O

N

4h

60 82 188–190 198–20015

9 O H

OCH3
O NH2

CN

O

OCH3

4i

60 80 202–204 20115

10 O H

NO2

O NH2

CN

O

NO2

4j

60 76 212–214 21015

(continued)
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reported methods such as cheap and readily available volcanic material, smooth reaction condi-
tion and purification of targeted molecule without column chromatography.

Plausible mechanism

The plausible mechanism for the synthesis of tetrahydrobenzo[b]pyran derivatives using pumice
supported perchloric acid were shown in Scheme 4.

Table 3. Continued.

Entry Aldehyde Benzopyran derivative Time (min.) Yield (%)

M.P.(�C)

Observed Reported (ref.)

11 O H

Cl

O NH2

CN

O

Cl

4k

40 82 202–204 226–22816

12 O H

OCH3

O NH2

CN

O

OCH3

4l

50 84 210–212 185–18716

13 O H

OCH3

OCH3

O NH2

CN

O

OCH3
OCH3

4m

65 78 164–166 132–14118

Reaction condition: Aldehyde (2mmol), dimedone (2mmol), and malanonitrile (2mmol) were refluxed in 10ml ethanol in the
presence of pumice supported perchloric acid (100mg)

Table 4. Comparison of the efficiency of pumice@HClO4 for the synthesis of tetrahydro-benzo[b]pyran derivative with other
protocols.

Entry Catalyst used Reaction condition Time (min) Yield (%) Ref. no.

1 CTMAB-bentonite H2O:EtOH (1:1) / RT 05–10 80–99 20

2 Nano-titania sulfuric acid EtOH / US / 40 �C 10–30 85–97 21

3 MNPs–PhSO3H H2O:EtOH (1:1) / 100 �C 10–60 65–95 23

4 Molecular sieve-supported Zinc EtOH/reflux 240 85–98 24

5 SiO2 nano-particles EtOH/RT 25–30 86–98 25

6 Xanthum gum supported Fe3O4 EtOH/RT 05–20 84–96 35

7 Phosphotungstic acid supported on SiO2@NHPhNH2 SF/ 80 �C 25–30 85–94 36

8 Fe3O4@PEO-SO3H EtOH/RT 25–40 85–95 37

9 Magnetic aluminosilicate nanoclay SF/ 40 �C 20–30 93–96 38

10 Fe3O4@SiO2–NH2 SF/ 60 �C 80–120 78–93 39

11 Pumice @HClO4 EtOH/reflux 45–65 78–90 Present work
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Conclusion

In conclusion, we have investigated a novel, highly efficient protocol for the synthesis of tetrahy-
drobenzo[b]pyran in the presence of heterogeneous catalyst pumice supported perchloric acid via
multi-component condensation of aromatic aldehydes, dimedone and malononitrile under reflux
condition. The catalyst was characterized by IR, XRD, EDS, SEM, and TGA techniques which
showed the formation novel pumice supported perchloric acid. The present protocol proved to
have numerous advantages like one-pot reaction, quantitative yield of the targeted molecule, short
reaction time, mild conditions inexpensive catalyst, recyclability and reusability of the catalyst,
smooth experimental condition, simple work up procedure and purification of targeted molecule
without column chromatography.
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Abstract: Tea powder waste is used an efficient natural green catalyst for the one pot three 

component synthesis of amidoalkyl naphthol using aromatic aldehyde, 2-naphthol and 

acetamide at reflux condition. The catalyst could be recovered and reused at least five times 

without appreciable decreasing the catalytic activity. The nontoxic solvent, excellent yield, 

short reaction time, green synthesis and natural eco-friendly catalyst are the advantages of 

present protocol.  

 

Keywords: Amidoalkyl naphthol, green synthesis, natural catalyst. 

 

Introduction 

In organic synthesis multi-component reaction are used due to its selectivity and high atom 

economy. In Ritter type reaction the formation of C-N gives N-alkyl amide compounds are of 

biologically active ingredientsi. This type of reaction is associated with condensation of aryl 

aldehydes, beta naphthol and acetamide in presence of different catalysts like silica sulphuric 

acidii, Ce(SO4)2
iii, HClO4-SiO2

iv, FeCl3-SiO2
v, montmorillonite K10vi, Ag nanoparticlesvii, 

bismuth (III) nitrate pentahydrateviii, nano sulphated zirconiaix,  nano-graphene oxidex, 

magnetic nano-Fe3O4@SiO2@Hexamethylene tetramine supported ionic liquidxi, 

tetrachlorosilanexii,  K5CoW12O40∙3H2O
xiii and cation-exchanged resinsxiv. The reported 

methods have some limitations such as use of toxic reagents, tedious work up, hazardous 

solvent, high reaction temperature and formation of by-products. Therefore, it become a 

challenge to develop new cost-effective method for synthesis of 1-amidoalkyl-2-naphthols.  

 According to Research Department of India the consumption of tea powder in India 

was approximately 1.1 billion kilograms during the financial year 2021. So, the large amount 

of waste tea powder was introduced in the environment. The tea powder consists of 

carboxylate, aromatic, phenolic, hydroxyl groups, oxyl groups, carbon and calciumxv. The tea 

waste was used as adsorbent for the removal of dyes and heavy metalsxv. The attempt was 

http://heteroletters.org/
mailto:bhagwatuphade@gmail.com
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made in which tea powder waste was used as a heterogeneous catalyst in multi component 

reactions. In continuation of our research workxvi-xviii, here we report new cost effective 

naturally occurring catalyst for the synthesis of 1-amidoalkyl-2-naphthols. 

 

Results and discussion 

The reaction was carried out by mixing benzaldehyde (1 mmol), 2-naphthol (1 mmol) and 

acetamide (1.2 mmol) in presence of 30 mg of tea waste catalyst. The mixture was refluxed 

with different solvents. The model reaction between benzaldehyde, 2-naphthol and acetamide 

in presence of tea waste catalyst was used to study the effect of solvent on synthesis of 1-

amidoalkyl 2-naphthol derivatives (Table 1). The ethanol was the suitable solvent for the 

synthesis of 1-amidoalkyl 2-naphthol derivatives.  

+

O H

R +

O

H3C NH2

Tea powder waste catalyst

OH

OH

NH

O CH3R

Scheme 1: Synthesis of 1-amidoalkyl 2-naphthols.

1 2 3 4 (a-l)

Ethanol, Reflux

 
 

Table: 1 Effect of solvent on synthesis of 1-amidoalkyl 2-naphthols 

Sr. No. Solvent Time (min) Yield (%) 

1 Solvent free 14 32 

2 Water 13 61 

3 Methanol 10 64 

4 Ethanol 8 92 

5 Chloroform 11 51 

6 Dimethyl sulfoxide 10 49 

 

The model reaction between benzaldehyde, 2-naphthol and acetamide was refluxed in 

presence of ethanol and tea waste catalyst to study the effect of amount of catalyst on 

synthesis of 1-amidoalkyl 2-naphthol derivatives (Table 2). The amount of tea waste catalyst 

was varied from 10-70 mg, the result shows that the 30 mg of catalyst was sufficient to carry 

out the reaction.  

Table: 2 Effect of amount of catalyst on synthesis of 1-amidoalkyl 2-naphthols 

Sr. No. Amount of catalyst (mg) Time (min) Yields (%) 

1 10 13 67 

2 20 10 78 

3 30 8 92 

4 40 8 92 

5 50 8 92 

6 60 8 92 

7 70 8 92 

   

In order to study the effect of time on the synthesis of 1-amidoalkyl 2-naphthols, the model 

reaction between benzaldehyde, 2-naphthol and acetamide in presence of 30 mg of tea waste 

catalyst was carried out in the range 2-14 minutes (Table 3). The 8 minutes was the optimum 

time for the synthesis of 1-amidoalkyl 2-naphthol derivatives.    
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Table: 3 Effect of time on synthesis of 1-amidoalkyl 2-naphthols 

Sr. No. Time (min) Yields (%) 

1 2 46 

2 4 69 

3 6 73 

4 8 92 

5 10 92 

6 12 92 

7 14 92 

 

In order to check the applicability of the tea waste catalyst, the series of the 1-amidoalkyl 2-

naphthol derivatives was synthesized (Table 4). A variety of aromatic aldehydes with 

electron donating and electron withdrawing groups were converted to 1 amidoalkyl 2-

naphthols in excellent yields (88-95 %) with short reaction time (6-18 min). In the present 

method the 1-amidoalkyl 2-naphthols were the sole products and no by-product was 

observed.  

 

Table: 4 Synthesis of 1-amidoalkyl 2-naphthol derivatives 

Sr. 

No. 

Aldehyde Product Time (min) Yields (%) M. P (oC) 

 

1 

OH

 
 

OH

NH

O CH3  
4a 

 

8 

 

92 

 

237-239 

2 OH

Cl

 
 

OH

N
H

Cl

O

CH3

 
4b 

 

12 

 

94 

 

191-194 
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3 OH

Cl  
 

OH

N
H O

CH3

Cl  
4c 

 

14 

 

91 

 

236-238 

 

4 

OH

Cl  
 

OH

NH

O CH3Cl  
4d 

 

6 

 

90 

 

224-226 

 

5 

OH

NO2

 
 

OH

N
H

NO2

O

CH3

 
4e 

 

13 

 

91 

 

215-217 

 

6 

OH

NO2  
 

OH

N
H O

CH3

NO2  
4f 

 

7 

 

94 

 

239-241 

 

7 

OH

NO2  
 

OH

NH

O CH3O2N  
4g 

 

6 

 

95 

 

234-236 

 

8 

OH

CH3  
 

OH

NH

O CH3H3C  
4h 

 

7 

 

91 

 

218-220 
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9 

OH

OCH3  
 

OH

N
H O

CH3

OCH3  
4i 

 

16 

 

89 

 

202-204 

 

10 

OH

OCH3  
 

OH

NH

O CH3H3CO  
4j 

 

13 

 

90 

 

180-182 

 

11 

OH

Br  
 

OH

N
H O

CH3

Br  
4k 

 

16 

 

88 

 

227-229 

 

12 

OH

Br  
 

OH

NH

O CH3Br  
4l 

 

18 

 

90 

 

226-228 

 

Experimental 

The commercially available chemicals were used without purification. The open capillary 

method was used to note the melting points. The 1-amidoalkyl 2-naphthol derivatives were 

matched with known compounds using their spectral data. The Perkin-Elmer FT-IR 

spectrometer was used to record the IR spectra. The Bruker Avance II (300 MHz) was used 

to record 1H NMR spectra. The Varian-Saturn GC/MS instrument was used to record mass 

spectrum of 1-amidoalkyl 2-naphthol derivatives. 

 

Preparation of catalyst 

The tea waste was collected, washed with doubled distilled water and dried at room 

temperature. The waste material was heated in heating oven at 110oC for 3 hrs, for the 

removal of adsorbed substance and water molecules. The tea waste was then grinded by using 

mortar and pestle. The tea waste was used again as catalyst in organic reactions. 

 

General procedure for the synthesis of 1-amidoalkyl 2-naphthols 

A mixture of aromatic aldehydes (1 mmol), 2-naphthol (1 mmol), acetamide (1 mmol) and 

tea waste catalyst (0.030 g) were refluxed in presence of ethyl alcohol in oil bath. The 
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progress of the reaction was monitored by thin layer chromatoghy technique. The solid 

products obtained were filtered, dried at room temperature. 

 

Compound 4a: 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.95 (s, 3H), 7.11-7.32 (m, 

9H),7.75-7.84 (m, 3H), 8.36 (d, J = 9 Hz, 1H), 9.92 (s, 1H), 13C NMR (75 MHz, DMSO-d6): 

δ (ppm) 23.2, 41.1, 118.4, 120.4, 122.2, 123.7, 124.8, 125.5, 127.4, 128.3, 128.1, 128.2, 

128.4, 134.1, 144.2, 152.4, 169.4, MS: m/z 231M+. 

 

Compound 4f: 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 2.04 (s, 3H), 7.12-7.45 (m, 6H), 

7.74-8.01 (m, 5H), 8.52 (d, J = 8.1 Hz, 1H), 10.10 (s, 1H), 13C NMR (75 MHz, DMSO-d6): 

25.51, 66.11, 108.60, 118.12, 120.24, 122.30, 123.92, 125.53, 127.41, 128.10, 129.18, 

129.44, 130.81, 132.06, 134.80, 147.67, 148.01, 152.45, 191.65, MS: m/z 276 M+. 

 

Conclusion 

We report here a green protocol for the synthesis of 1-amidoalkyl 2-naphthol derivatives by 

the condensation of aromatic aldehydes, 2-naphthol and acetamide in presence of naturally 

available tea waste as a catalyst. The non-toxic solvent, easy work up, high yield and cost 

effective are the advantages of present method.  
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Abstract 

   
Annona muricata L. is conventionally used to treat various ailments. This plant shows varied medicinally 

valuable effects like anti-cancer, anti-hermitic, anti-spasmodic,anti-convulsant,anti-pyretic, sedative, 

hypotensive, digestive, anti-diabetes, anti-microbial,anti- inflammatory, anti- dysenteric, andanti- rheumatic 

effects. The phytochemical qualitative analysis of Annona muricata leaves exhibits the presence of 

carbohydrates, tannins, saponins, alkaloids, flavonoids, glycosides, quinines, phenols, terpenoids, coumarins, 

anthraquinones, steroids, phlobatannins and anthracyanine.The GC-MS analysis report shows the 22 

compounds in the leaf ethanolic and hexane extract of Annona muricata by comparing retention time and 

interpretation of their mass spectra.  
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Introduction 

Annona muricata L. is a species of Annona muricata. 

It is also known as Laxman phal. It is an Annona 

species from the Annonaceae family of custard apple 

trees. Graviola, also known as soursop, is an edible 

fruit. Annona muricata is native to the Caribbean and 

Central America, but due to its widespread 

cultivation, it has become invasive in tropical and 

subtropical climates around the world (Hamizah et 

al.,2012).Phytochemicals are natural biological active 

and non-nutrient compounds found in plants that 

protect them from fungal and bacterial infections 

(Doughari et al., 2009; Krishnaiah et al., 2009). 

Recently, bioactive phyto-compounds and their 

effects on human health have been studied. Extracted 

phyto-chemicals and their mode of action as an anti-

cancer agent provide useful information for future 

applications. As a result, it is critical to test the 

apoptotic potential of plants in their crude extract or 

as a pure compound. The plant extracts have been 

linked to the arrest, prevention, or reversal of 

carcinogenesis' molecular and cellular processes 

(Neergheen et al., 2009; Wamidh; 2011). Anti-

oxidant compounds combat diseases such as cancer, 

Alzheimer's, atherosclerosis, Parkinson's, diabetes, 

and heart disease (Valko et al., 2007, Joabe et al., 

2010; Aboul-Enein et al., 2012). Annonaceous 

acetogenins from Annona muricata have been shown 

in vitro to become a new anti-cancer and anti-tumor 

agent. These compounds are selectively toxic to 

different types of cancerous cells while causing no 

harm to healthy cells (Rieser et al., 1993, Wu et al., 

1995; Hamizah et al., 2012). Annona muricata leaf 

extracts have the potential to develop a new 

alternative treatment for cervical cancer (Qorina et 

al., 2020). The current study investigates secondary 

metabolites of Annona muricata and characterization 

of compounds using GC-MS analysis to the presence 

of phytochemical constituents, with the goal of curing 

many diseases and disorders. 

 

Materials and methods 

Collection of plant materials 

The plant material was collected from Mahatma 

Phule Krishi Vidyapeeth (MPKV), Rahuri(Located 

19.3491040N 74.6461060E) Ahmednagar district, 

Maharashtra during November 2020.The plant 

material was authenticated by Dr.Wabale A.S., 

Department of Botany, P.V.P.College, Pravaranagar. 

 

Samples preparation and Extraction 

The leaves of Annona muricata were cleaned with 

water and cut into small pieces, drying was done at 

RT (room temperature) for three weeks and the dried 

samples were powdered in a grinder machine (Tiwari 

et al., 2011;  Das et al., 2010). 10 grams of dried 

powder of leaves were suspended in 200 ml of each 

water, ethanol and hexane solvents. The extraction 

procedure was done using Soxhlet apparatus for five 

hours at a definite temperature for each solvent but 

not more thanthe boiling point. The extract was 

concentrated with a rotary evaporator and stored in a 

refrigerator throughout the experiment (Roghini and 

Vijayalakshmi et al., 2018). 

 

Phytochemical screening  

Samples of ethanol, hexane and water extracts of 

Annona muricata were selected for the screening 

ofphyto constituent’s viz. tannins, saponins, alkaloids, 

flavonoids, glycosides, quinones, phenol, terpenoids, 

cardiac glycosides, coumarins, anthraquinones, 

phlobatanin and anthracyanine.Tannins, saponins, 

alkaloids, flavonoids, glycosides, quinones, phenol, 

terpenoids, cardiac glycosides, coumarins, 

anthraquinones, phlobatanin, and anthracyanine 

were screened in ethanol, hexane, and water extracts 

of Annona muricata. 

 

Carbohydrates Test: 2-3ml of the extract was treated 

with 2 ml of Molisch's reagent and 1-2 drops of conc. 

H2SO4, resulting in the formation of a purple color, 

confirms the presence of carbohydrates (Roghini and 

Vijayalakshmi et al., 2018). 

 

Tannin Test: Tannins were tested by adding 2 ml of 5 

percent ferric chloride to 1 ml of extract. The presence 

of tannins showed by dark blue or greenish-black 

color (Roghini and Vijayalakshmi et al.,2018). 

 

Saponins Test: 2 ml of extract was mixed with 2 ml of  
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distilled water and shaken in a measuring cylinder for 

15 minutes. The presence of saponins is revealed by 

the formation of a 1 to 2 centimeter layer of foam 

(Roghini and Vijayalakshmi et al., 2018). 

 

Alkaloids Test: 2-3 ml of extract was mixed with 1-2 

drops of conc. hydrochloric acid. 2-3ml of Mayer's 

reagent was then added. The presence of alkaloids is 

revealed by the formation of white ppt (Roghini and 

Vijayalakshmi et al.,2018). 

 

Flavonoids Test: 2 ml of 2N NaOH was added to 3ml 

of extract. The presence of flavonoids is indicated by 

the yellow colour (Roghini and Vijayalakshmi et al., 

2018). 

 

Glycosides Test: 1-2ml of plant sample was mixed 

with 3 ml of chloroform and 10% NH4OH solution. 

The presence of glycosides is indicated by the pink 

colour (Roghini and Vijayalakshmi et al., 2018). 

 

Quinones Test: 2 ml of sample extract was mixed with 

2 ml of conc.H2SO4. The presence of quinines is 

indicated by the presence of red color (Roghini and 

Vijayalakshmi et al., 2018). 

 

Phenols Test: 1-2 ml of extract, 2 ml of D/W was 

added, followed by a few drops of 10% FeCl3. Phenols 

are indicated by the presence of green or blue color 

(Roghini and Vijayalakshmi et al., 2018). 

 

Terpenoids Test: Add 0.5 ml of extract, 1-2ml of 

chloroform, and 2 ml of conc. H2SO4 to 0.5 ml of 

extract. Terpenoids indicated by the presence of red 

or brown colour at the interface (Roghini and 

Vijayalakshmi et al., 2018). 

 

Glycoside Test: 1 ml of the extract was mixed with 2-3 

ml of glacial CH3COOH and 1-2 drops of FeCl3. This 

was followed by 1-2ml of conc. H2SO4.Glycosides are 

indicated by the presence of a brown ring at the 

interface (Roghini and Vijayalakshmi et al., 2018). 

 

Ninhydrin Test: 1-2 drops ninhydrin reagent added to 

2 ml of the extract and heated for few minutes. The 

presence of amino acids is indicated by blue or violet 

color (Roghini and Vijayalakshmi et al., 2018). 

 

Coumarins Test: 1 ml of 10% NaOH was mixed with 

2ml of extract. The presence of coumarins is indicated 

by the presence of yellow colour (Roghini and 

Vijayalakshmi et al., 2018). 

 

Anthraquinones Test: 1-2ml of 10% NH4OH solution 

was added to 2 ml of extract, and the formation of 

pinkish color ppt indicates the presence of 

anthraquinones (Roghini and Vijayalakshmi et al., 

2018). 

 

Steroid Test: 1-2ml of extract and 1-2ml of CHCl3 was 

added; along with 1-2 drops of conc.H2SO4.The 

formation of a brown color indicates the presence of 

steroids, while the formation of a bluish brown ring 

indicates the presence of phyto-steroids (Roghini and 

Vijayalakshmi et al., 2018). 

 

Phlobatannins Test: 1-2ml of extract, a few drops of 

HCl was added. The presence of phlobatannins is 

indicated by the formation of redish ppt (Roghini and 

Vijayalakshmi et al., 2018). 

 

Anthracyanine Test: Few ml of the extract was mixed 

with 1-2 ml of 2N NaOH and heated for 5 minutes. 

The presence of anthocyanin was indicated by the 

formation of a bluish-green color (Roghini and 

Vijayalakshmi et al., 2018). 

 

Gas chromatography–Mass spectrometry (GC-MS) 

analysis 

Ethanol and Hexane fractions of Annona muricata 

leaf extracts were taken for the GC-MS analysis. The 

analysis was done on a GC clarus 500 Perkin Elmer 

system comprising a AOC-20i auto sampler and gas 

chromatograph interfaced to a mass spectrometer 

instrument with the following conditions: column DB 

35- MS capillary standard non-polar column 30 x 

0.25mm ID x 0.25μMdf operating in electron impact 

mode at 70eV; Helium gas 99.99% was used as a 

carrier gas at a constant flow of 1 milliliter per minute 

and employed the injection volume of 1 microliter. 
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The oven temperature was set from 70ºc with an 

increase of 6ºc/min to 260ºc, then 5ºc/min to 280ºc. 

A mass spectrum was taken at 70eV and the total gas 

column running time is 37.52min. The relative 

percent amount of each constituent was calculated by 

comparing its average peak area to the total areas. 

Thermo GC-Trace Ultra Ver 5.0 software set to handle 

mass spectra and chromatograms (Shibula et al., 

2015). 

 

Results 

Qualitative phytochemical analysis 

Qualitative phytochemical analysis of Annona 

muricata extracts is summarized in Table 1. 

 

Table 1. Qualitative phytochemical analysis of different leaf extracts of Annona muricata. 

Sr. No. Test Distilled Water Extract Ethanol Extract Hexane Extract 

  Carbohydrates 

(Molisch’s Test) 

+ + + 

  Tannins - + - 

  Saponins + - - 

  Alkaloids - + + 

  Flavonoids - - + 

  Glycosides + - - 

  Quinones + + + 

  Phenols - + - 

  Terpenoids + + + 

  Ninhydrin - + - 

  Coumarins - - + 

  Anthraquinones - - - 

  Steroids - + - 

  Phlobatanin - - - 

  Anthracyanine - + - 

 

The phytochemical analysis of distilled water extract 

confirmed the presence of secondary metabolites like 

carbohydrates, saponins, glycosides, quinones and 

terpenoids. Ethanol extract confirmed the presence of 

secondary metabolites like carbohydrate, Tanins, 

alkaloids, quinones, phenols, terpenoids, cardiac 

glycosides, ninhydrin, steroids and anthracyanins, 

while hexane extract confirmed the presence of 

carbohydrates, alkaloids, flavonoids, quinones, 

terpenoids, cardiac glycosides and coumarins.  

 

Gas chromatography–Mass spectrometry (GC-MS) 

analysis 

GC-MS analysis of Ethanol Extract 

The total ion chromatogram of the ethanolic extract 

showed the GC-MS profile of the identified 

compounds (Table 2, Fig. 1). Twelve compounds were 

identified in the ethanol fraction of Annona muricata 

by GC-MS analysis.  

 

The prevailing compounds were 1,5-heptadiene, 

2,3,6-trimethyl, phytol, acetate, 3,7,11,15-tetramethyl-

2-hexadecen-1-ol, n-hexadecanoic acid, 2,6,10-

dodecatrien-1-ol, 3,7,11-trimethyl-, phytol, 9,12-

octadecadienoic acid (z,z), octadecanoic acid, 

squalene, di-n-octyl phthalate, gamma.-tocopherol, 

cyclohexane propionic acid and 4-oxo-, ethyl ester.   

 

The presence of hydrofurans and epoxides in the 

sample detected by GC-MS analysis were analyzed on 

the basis of different annonaceous acetogenins from 

Annona muricata. 
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Table 2. GCMS Analysis of ethanol leaf extract of Annona muricata. 

Peak R.Time Area Area % Height Height% CompoundName 

1.  24.008 22261 1.53 8906 1.90 1,5-Heptadiene, 2,3,6-trimethyl 

2.  30.815 211713 14.58 78807 16.78 Phytol, acetate 

3.  31.334 27851 1.92 11635 2.48 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

4.  31.704 67616 4.66 24186 5.15 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

5.  33.491 169332 11.66 45017 9.58 n-Hexadecanoic acid 

6.  34.100 29584 2.04 11312 2.41 2,6,10-Dodecatrien-1 ol,3,7,11-trimethyl 

7.  36.212 119299 8.21 41095 8.75 Phytol 

8.  36.700 38996 2.68 15024 3.20 9,12Octadecadienoicacid (Z,Z) 

9.  37.194 56918 3.92 16991 3.62 Octadecanoicacid 

10.  38.243 129984 8.95 22919 4.88 Squalene 

11.  43.499 50280 3.46 18526 3.94 Di-n-octyl phthalate 

12.  46.665 65690 4.52 14351 3.06 Gamma.-Tocopherol 

13.  48.474 23917 1.65 8780 1.87 Cyclo hexane propionic acid, 4-oxo-, ethylester 

 

GC-MS analysis of Hexane Extract 

The total ion chromatogram of the hexane extract 

showed the GC-MS profile of the identified 

compounds (Table 3, Fig.2). Nine compounds were 

identified in hexane fraction of Annona muricata by 

GC-MS analysis. The prevailing compounds were 2-

propenoic acid, butyl ester, oxalic acid, butyl propyl 

ester, nonane, 3-methyl-, nonane, 1-iodo-,  4-fluoro-

2-trifluoromethylbenzoic acid, neope, sulfurous acid, 

2-ethylhexyl hexyl ester, oxalic acid, dineopentyl 

ester, 6-octen-1-ol, 3,7-dimethyl-, propanoate, 1,2-

benzenedicarboxylic acid and butyl octyl ester.

 

Table 3. GCMS Analysis of hexane leaf extract of Annona muricata. 

Peak R.Time Area Area % Height Height% Compound Name 

1.  6.467 33800 20.72 10088 16.45 2-Propenoicacid,butylester 

2.  7.436 2506 1.54 1692 2.76 Oxalicacid,butylpropylester 

3.  12.256 8515 5.22 4417 7.20 Nonane,3-methyl- 

4.  23.073 5853 3.59 3649 5.95 Nonane,1-iodo- 

5.  23.837 14061 8.62 4146 6.76 4-Fluoro-2-trifluoromethyl 

benzoicacid,neope 

6.  28.030 9725 5.96 5066 8.26 Sulfurousacid,2-ethylhexylhexylester 

7.  29.969 3023 1.85 2227 3.63 Oxalicacid, dineopentyl ester 

8.  30.814 29365 18.00 12054 19.66 6-Octen-1-ol,3,7-dimethyl ,propanoate 

9.  33.500 56317 34.52 17985 29.33 1,2-Benzenedicarboxylic acid, butyloctyl ester 

 

Discussion 

More phytochemical compounds were elucidated in 

the Ethanol than Hexane and Distilled water fraction 

of Annona muricata, which was in contrast to the 

observation of Roghini and Vijayalakshmi, 2018.The 

past reports of Shibula and Velavan (2015), Lali 

Growther (2018), Alamu et al. (2020); also proved 

4,4-dimethyl-5-oxo-tetrahydrofuran-3-carboxylic 

acid, 1-dodecenoic acid, 1-octadecanoic acid, 

isoaromadendrene epoxide, 1-hexadecanoic acid, 1,2-

benzenedicarboxylic acid, dibutyl ester, 1,2-

benzenedicarboxylic acid, di isooctyl ester and 

2,7,12,18-tetramethyl-3,8-diethyl-13,17-bis(3-

chloroprophyl) prophyrin, 12-octadecadienoic acid, 

hexadecanoic acid ethyl ester, 9-octadecenoic acid, - 

2-hydroxy-1-(hydroxymethyl)ethyl ester, n-
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hexadecanoic acid and squalene; 2-methyl-z,z-3,13-

octadecadienol,tetradecanoic acid ethyl ester, n-

hexadecanoic acid, 1,8,11-heptadecatriene in ethanol 

and ethyl acetate extract fraction of Annona muricata 

extract. among these, disparate compounds are 

phytol, 3,7,11,15- tetramethyl-2-hexadecen-1-ol, di-n-

octyl phthalate, gamma tocopherol and nonane.

 

Fig. 1. GCMS Chromatogram of ethanol leafextract of Annona muricata. 

 

Fig. 2. GCMS Chromatogram of hexane leafextract of Annona muricata. 

Conclusion 

The presence of 5 phytoconstituents in water extract, 

10 phytoconstituents in ethanol extract, and 7 

phytoconstituents in hexane extract is revealed by 

phytochemical screening. This discovery 

demonstrated variation in phytochemicals as a result 

of solvent solubility variation and ethanolic extract as 

a potential source of phytochemicals. The presence of 

13 compounds in ethanol extract and 9 compounds in 

hexane extract was confirmed by GC-MS analysis. 

The pharmaceutical properties of this plant are due to 

the presence of various phyto-bioactive compounds.  
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Abstract:   

 Approximately  60% of populations in underdeveloped countries residing in 

agricultural and forest areas, from nearby habitat they harvest various plant parts such as 

roots, leaves, fruits, and nuts which forms an integral part of their daily diets. Ahmednagar 

is one of largest districts in western Maharashtra and consists of both hilly area and deccan 

plateau plain land. It is situated in the rain shadow region of the Western Ghats, whereas 

the northwestern region comes under the hilly region of western ghats and receives plenty 

of rain resulting in flourishing biodiversity.  A survey was conducted in Akole and 

Sangamner areas of Ahmednagar  to find out the information about wild vegetables 

utilized by natives as a source of food. A total of 62 plant species of wild vegetables 

belonging to 59 genera and  23 families were reported edible from the selected  area. The 

fabaceae was the most dominant family (14%), followed by Amaranthaceae  (12%), 

Cucurbitaceae  (8%), These three families contributed about 35% of the wild vegetables 

used in the study area.  

Keywords:  Wild vegetables, Akole, Sangamner, Survey, Plants  

Introduction:  

Earlier than Human civilization man had been using  wild edible plants as  a food 

because of their rich nutritional value and therapeutic importance. These plants play a 

significant role in their livelihoods [1]. Approximately  60% of populations in 
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underdeveloped countries reside in agricultural and forest areas and harvest various plant 

parts from nearby habitats such as roots, leaves, fruits, and nuts which forms an integral 

part of their routine diets[2]. These wild edible plants not only act as alternatives to 

cultivated food during periods of food scarcity  but they also play as a valuable 

supplement for a nutritionally balanced diet [3].  There are nearly 45,000 species of wild 

plants out of which 9,500 species are considered as ethno-botanically important species. [4]  

Wild edible plants consist of plant species which grow spontaneously in self-

maintaining populations in natural or semi-natural ecosystems [5]. These wild species 

include all vegetables that are collected (not cultivated), whether they are collected in 

agricultural areas, barren land, non-cultivated areas, or forestland [6]. Since time 

immemorial, the tradition of collection of wild edible vegetables has been inculcated in 

many asian and african communities [7]. Rural tribal communities are considered experts 

in particular to make use of wild vegetables to supplement their diets, which is based on 

rainfed cultivation of staples cereals and pulses [8, 9]. The Western Ghats is a mountain 

range that covers an area of 160,000 km2 (62,000 sq mi) in a length of 1,600 km (990 mi) 

parallel to the western coast of the Indian peninsula, from which Maharashtra constitutes 

an area of 52,000 km2 [10]. Ahmednagar is one of largest districts in western Maharashtra 

and consists of both hilly area and plain land. It is situated in the rain shadow region of the 

Western Ghats, whereas the northwestern region comes under the hilly region of Western 

Ghats and receives plenty of rain resulting in flourishing biodiversity. The northwestern 

region of Ahmednagar is composed of two tehsils Sangamner and Akole. These two 

tehsils consist of Hilly areas covered by three mountain ranges such as Adhala, Baleshwar 

and Kalsubai.  By the impacts of the tallest peaks of the mountain, this region is one of the 

richest in terms of vegetation and diversity in western ghat. The indigenous peoples 

residing in the untouched and mountainous area fulfill their food needs by using the 

natural resources available  in the nearby habitats such as uncultivated areas, grassland, 

mountain scape, forest and barren land. earlier studies are only concentrated in Akole 

tehsil and reported 31 species of wild vegetables belonging to 23 families. As the earlier 

studies suggested that there is need for further research, a survey was conducted in 
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selected areas to find out the information about wild vegetables utilized by natives as a 

source of food.  

Materials and methods:  

Study area:  

` Geographically, Ahmednagar district is the largest district in the state of 

Maharashtra. Sangamner and Akole are  tehsil places in Ahmednagar district, 

Maharashtra state, well covered by the mountains of Sahyadri Fig, 1.  

 

 

Ahmednagar in Maharashtra 
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Akole in Ahmednagar  Sangamner in Ahmednagar  

  Fig 1. Location map  

Reconnaissance Survey and Selection of Study Sites and Informants 

A reconnaissance survey was conducted throughout the year  to have an overview 

of the terrain and potential informants, and to select study sites. Study villages were 

selected based on basins of three rivers. Before the survey, a semi-structured questionnaire 

was designed. In each selected village, a purposive sampling method was employed to 

identify key informants and respondents. Key informants were selected for interviews 

with assistance of the local villagers.  

 Ethnobotanical Data Collection 

Ethnobotanical techniques were employed to collect data on the utilization and 

management of wild vegetables. The information was collected from the local community 

using semi-structured interviews, focus group discussions, ecological surveys, market 

surveys. Information regarding the local names of plant species, growth forms, part (s) 

used, availability in natural resources, method of processing and vegetable preparation 

was carefully recorded.  

Ecological Surveys 

For the ecological inventory of wild vegetables, forest walks were done by a team 

accompanied by the key informants in the different communities. The opportunistic 
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sampling technique was exploited in the survey for wild vegetables with each sampling 

site geo-referenced using a Google map. Based on the ethnobotanical information 

obtained from informants’, plant specimens with their vernacular names were collected. 

Further identification of all plant specimens was done using flora such as Flora of 

Maharashtra and Flora of Bombay Presidency. 

Results and discussion:  

Indigenous Knowledge 

Most of the local community members with good knowledge of and use of wild 

vegetables belonged to the older generation between the ages of 50 and 80. Whereas the 

least are the younger generation below the age of 40. It was also noted that most of the 

household members involved in tendering these vegetables are women across all age 

categories. 

The wild vegetables 

The diversity of plants used as vegetables in the North western region  of 

Ahmednagar  shown in  Table 1. A total of 62 species in 59 genera of 32 families were 

identified. The most common life forms used were herbs, vegetable. Kolhe (2009) 

reported A total of 31 plant species of wild vegetables belonging to 23 families were 

reported from the study area [11]. Similar results were obtained by Khayde et al. (2009). 

from Akole tehsil [12].  
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Fig 2: Families of wild vegetables with percentage of genera    

 

The fabaceae was the most dominant (14%), followed by Amaranthaceae  (12%), 

Cucurbitaceae  (8%), These three families contributed about 35% of the wild vegetables 

used in the study area. The other families with their respective consumption percentages 

are shown in Figure 2. 

Conclusion:  

Most of the local community members with good knowledge of and use of wild 

vegetables belonged to the older generation between the ages of 50 and 80. Whereas the 

least are the younger generation below the age of 40. So emphasis should be given to find 
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out any cultivation method of these wild vegetables. Also further research should be 

carried out to find out medicinal properties of these vegetables.  
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